This paper describes a new method to generate discrete signals with arbitrary power spectral density (PSD) and first order probability density function (PDF) without any limitation on PDFs and PSDs. The first approxim...This paper describes a new method to generate discrete signals with arbitrary power spectral density (PSD) and first order probability density function (PDF) without any limitation on PDFs and PSDs. The first approximation has been achieved by using a nonlinear transform function. At the second stage the desired PDF was approximated by a number of symmetric PDFs with defined variance. Each one provides a part of energy from total signal with different ratios of remained desired PSD. These symmetric PDFs defined by sinusoidal components with random amplitude, frequency and phase variables. Both analytic results and examples are included. The proposed scheme has been proved to be useful in simulations involving non-Gaussian processes with specific PSDs and PDFs.展开更多
首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对...首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对节点自适应传感半径调整算法进行了模拟实验和分析。仿真结果表明,AASR能够有效提高节点生存时间,减少能量消耗,提高覆盖率。展开更多
文摘This paper describes a new method to generate discrete signals with arbitrary power spectral density (PSD) and first order probability density function (PDF) without any limitation on PDFs and PSDs. The first approximation has been achieved by using a nonlinear transform function. At the second stage the desired PDF was approximated by a number of symmetric PDFs with defined variance. Each one provides a part of energy from total signal with different ratios of remained desired PSD. These symmetric PDFs defined by sinusoidal components with random amplitude, frequency and phase variables. Both analytic results and examples are included. The proposed scheme has been proved to be useful in simulations involving non-Gaussian processes with specific PSDs and PDFs.
文摘首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对节点自适应传感半径调整算法进行了模拟实验和分析。仿真结果表明,AASR能够有效提高节点生存时间,减少能量消耗,提高覆盖率。