Many safety-critical applications that utilize the global navigation satellite system (GNSS) demand highly accurate positioning information, as well as highly integrity and reliability. Due to GNSS signals are easily ...Many safety-critical applications that utilize the global navigation satellite system (GNSS) demand highly accurate positioning information, as well as highly integrity and reliability. Due to GNSS signals are easily distorted by the interferences or disturbances, the signal quality monitoring (SQM) is necessary to detect the presence of dangerous signal distortions. In this paper, we developed an SQM software for binary offset carrier (BOC) modulated navigation signals. Firstly, the models of BOC signal with ideal and distortion are presented respectively. Then the architecture of SQM software is proposed. Moreover, the effect of the white gaussian noise (WGN) and the front-end filter on the correlation peak of the receiver is analyzed. Finally, the biases induced by the signal distortion are evaluated. The experiments simulate the relationships between the code phase shift and the normalized correlation value in the case of the signal digital distortion and the analog distortion. The simulation results demonstrate that the proposed SQM method can effectively monitor the signal distortion and accurately estimate the correlation peak deviation caused by the distortion.展开更多
基金supported by the National Natural Science Foundation of China(61771393 61571368)
文摘Many safety-critical applications that utilize the global navigation satellite system (GNSS) demand highly accurate positioning information, as well as highly integrity and reliability. Due to GNSS signals are easily distorted by the interferences or disturbances, the signal quality monitoring (SQM) is necessary to detect the presence of dangerous signal distortions. In this paper, we developed an SQM software for binary offset carrier (BOC) modulated navigation signals. Firstly, the models of BOC signal with ideal and distortion are presented respectively. Then the architecture of SQM software is proposed. Moreover, the effect of the white gaussian noise (WGN) and the front-end filter on the correlation peak of the receiver is analyzed. Finally, the biases induced by the signal distortion are evaluated. The experiments simulate the relationships between the code phase shift and the normalized correlation value in the case of the signal digital distortion and the analog distortion. The simulation results demonstrate that the proposed SQM method can effectively monitor the signal distortion and accurately estimate the correlation peak deviation caused by the distortion.