New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated no...New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated noises. Based on the minimum mean square error estimation theory, the nonlinear optimal predictive and correction recursive formulas under the hypothesis that the input noise is correlated with the measurement noise are derived and can be described in a unified framework. Then, UKF and DDF with correlated noises are proposed on the basis of approximation of the posterior mean and covariance in the unified framework by using unscented transformation and second order Stirling's interpolation. The proposed UKF and DDF with correlated noises break through the limitation that input noise and measurement noise must be assumed to be uneorrelated in standard UKF and DDF. Two simulation examples show the effectiveness and feasibility of new algorithms for dealing with nonlinear filtering issue with correlated noises.展开更多
Sigma-Point Kalman Filters (SPKFs) are popular estimation techniques for high nonlinear system applications. The benefits of using SPKFs include (but not limited to) the following: the easiness of linearizing the nonl...Sigma-Point Kalman Filters (SPKFs) are popular estimation techniques for high nonlinear system applications. The benefits of using SPKFs include (but not limited to) the following: the easiness of linearizing the nonlinear matrices statistically without the need to use the Jacobian matrices, the ability to handle more uncertainties than the Extended Kalman Filter (EKF), the ability to handle different types of noise, having less computational time than the Particle Filter (PF) and most of the adaptive techniques which makes it suitable for online applications, and having acceptable performance compared to other nonlinear estimation techniques. Therefore, SPKFs are a strong candidate for nonlinear industrial applications, i.e. robotic arm. Controlling a robotic arm is hard and challenging due to the system nature, which includes sinusoidal functions, and the dependency on the sensors’ number, quality, accuracy and functionality. SPKFs provide with a mechanism that reduces the latter issue in terms of numbers of required sensors and their sensitivity. Moreover, they could handle the nonlinearity for a certain degree. This could be used to improve the controller quality while reducing the cost. In this paper, some SPKF algorithms are applied to 4-DOF robotic arm that consists of one prismatic joint and three revolute joints (PRRR). Those include the Unscented Kalman Filter (UKF), the Cubature Kalman Filter (CKF), and the Central Differences Kalman Filter (CDKF). This study gives a study of those filters and their responses, stability, robustness, computational time, complexity and convergences in order to obtain the suitable filter for an experimental setup.展开更多
荷电状态(state of charge,SOC)估算技术是锂电池管理系统中最重要的功能之一。针对磷酸铁锂电池组展开研究,以准确估计电池组中各单体荷电状态为目的,首先采用一阶戴维南(Thevenin)模型结合安时法建立综合电池模型;采用一种平方根采样...荷电状态(state of charge,SOC)估算技术是锂电池管理系统中最重要的功能之一。针对磷酸铁锂电池组展开研究,以准确估计电池组中各单体荷电状态为目的,首先采用一阶戴维南(Thevenin)模型结合安时法建立综合电池模型;采用一种平方根采样点卡尔曼滤波(square root sigma point Kalman filter,SRSPKF)方法,配合在线递推最小二乘(recursive least square,RLS)算法,同时实现对电池等效模型参数的辨识以及对电池荷电状态的估算。理论上讲,SRSPKF算法使系统状态直接以其方差的平方根形式传播,可显著降低常规Sigma点卡尔曼滤波器(sigma points Kalman filter,SPKF)算法的复杂性。实验结果表明,相对SPKF而言,SRSPKF具有更强的状态估计误差抑制能力,采用SRSPKF可以获得比SPKF更准确的SOC估计结果。展开更多
基金Projects(61135001, 61075029, 61074155) supported by the National Natural Science Foundation of ChinaProject(20110491690) supported by the Postdocteral Science Foundation of China
文摘New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated noises. Based on the minimum mean square error estimation theory, the nonlinear optimal predictive and correction recursive formulas under the hypothesis that the input noise is correlated with the measurement noise are derived and can be described in a unified framework. Then, UKF and DDF with correlated noises are proposed on the basis of approximation of the posterior mean and covariance in the unified framework by using unscented transformation and second order Stirling's interpolation. The proposed UKF and DDF with correlated noises break through the limitation that input noise and measurement noise must be assumed to be uneorrelated in standard UKF and DDF. Two simulation examples show the effectiveness and feasibility of new algorithms for dealing with nonlinear filtering issue with correlated noises.
文摘Sigma-Point Kalman Filters (SPKFs) are popular estimation techniques for high nonlinear system applications. The benefits of using SPKFs include (but not limited to) the following: the easiness of linearizing the nonlinear matrices statistically without the need to use the Jacobian matrices, the ability to handle more uncertainties than the Extended Kalman Filter (EKF), the ability to handle different types of noise, having less computational time than the Particle Filter (PF) and most of the adaptive techniques which makes it suitable for online applications, and having acceptable performance compared to other nonlinear estimation techniques. Therefore, SPKFs are a strong candidate for nonlinear industrial applications, i.e. robotic arm. Controlling a robotic arm is hard and challenging due to the system nature, which includes sinusoidal functions, and the dependency on the sensors’ number, quality, accuracy and functionality. SPKFs provide with a mechanism that reduces the latter issue in terms of numbers of required sensors and their sensitivity. Moreover, they could handle the nonlinearity for a certain degree. This could be used to improve the controller quality while reducing the cost. In this paper, some SPKF algorithms are applied to 4-DOF robotic arm that consists of one prismatic joint and three revolute joints (PRRR). Those include the Unscented Kalman Filter (UKF), the Cubature Kalman Filter (CKF), and the Central Differences Kalman Filter (CDKF). This study gives a study of those filters and their responses, stability, robustness, computational time, complexity and convergences in order to obtain the suitable filter for an experimental setup.
文摘荷电状态(state of charge,SOC)估算技术是锂电池管理系统中最重要的功能之一。针对磷酸铁锂电池组展开研究,以准确估计电池组中各单体荷电状态为目的,首先采用一阶戴维南(Thevenin)模型结合安时法建立综合电池模型;采用一种平方根采样点卡尔曼滤波(square root sigma point Kalman filter,SRSPKF)方法,配合在线递推最小二乘(recursive least square,RLS)算法,同时实现对电池等效模型参数的辨识以及对电池荷电状态的估算。理论上讲,SRSPKF算法使系统状态直接以其方差的平方根形式传播,可显著降低常规Sigma点卡尔曼滤波器(sigma points Kalman filter,SPKF)算法的复杂性。实验结果表明,相对SPKF而言,SRSPKF具有更强的状态估计误差抑制能力,采用SRSPKF可以获得比SPKF更准确的SOC估计结果。