The proton beam with energy around 100 MeV has seen wide applications in modern scientific research and in various fields.However,proton sources in China fall short for meeting experimental needs owing to the vast siz...The proton beam with energy around 100 MeV has seen wide applications in modern scientific research and in various fields.However,proton sources in China fall short for meeting experimental needs owing to the vast size and expensive traditional proton accelerators.The Institute of Nuclear Science and Technology of Sichuan University proposed to build a 3 GHz side-coupled cavity linac(SCL)for re-accelerating a 26 MeV proton beam extracted from a CS-30 cyclotron to 120 MeV.We carried out investigations into several vital factors of S-band SCL for proton acceleration,such as optimization of SCL cavity geometry,end cell tuning,and bridge coupler design.Results demonstrated that the effective shunt impedance per unit length ranged from 22.5 to 59.8 MX/m throughout the acceleration process,and the acceleration gradient changed from 11.5 to 15.7 MV/m when the maximum surface electric field was equivalent to Kilpatrick electric field.We obtained equivalent circuit parameters of the biperiodic structures and applied them to the end cell tuning;results of the theoretical analysis agreed well with the 3D simulation.We designed and optimized a bridge coupler based on the previously obtained biperiodic structure parameters,and the field distribution un-uniformness was\1.5%for a two-tank module.The radio frequency power distribution system of the linac was obtained based on the preliminary beam dynamics design.展开更多
The enforcement on sustainable design and environmental-friendly products has attracted the interest of researchers and engineers in the context of replacing metals and synthetic fibers with natural based fibers,espec...The enforcement on sustainable design and environmental-friendly products has attracted the interest of researchers and engineers in the context of replacing metals and synthetic fibers with natural based fibers,especially in the automotive industry.However,studies on sustainable natural fiber material selection in the automotive industry are limited.Evaluation for the side-door impact beam was conducted by gathering product design specification from literature which amounted to seven criteria and it was forwarded to ten decision makers with automotive engineering and product design background for evaluation.The weightage required for decision-making was obtained using the Analytic Hierarchy Process(AHP)method based on six criteria.Following this,the best natural fiber materials to be used as reinforcement in polymer composites were selected using the VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.The results using both the AHP and VIKOR method showed that kenaf was the best natural fiber for the side-door impact beam composites.The result showed the lowest VIKOR value,QA1=0.0000,which was determined to be within the acceptable advantage and acceptable stability conditions.It can be concluded that the application of integrated AHP-VIKOR method resulted in a systematic and justified solution towards the decision-making process.展开更多
The welding deformation is a key factor affecting the production quality of the side beam of the subway bogie frame. A major issue is how to control the welding deformation during the manufacturing processes. Based on...The welding deformation is a key factor affecting the production quality of the side beam of the subway bogie frame. A major issue is how to control the welding deformation during the manufacturing processes. Based on the "Local- Global" method, the thermal cycle and the stress of a local model extracted from the global side beam model were simulated. The simulated strain result was mapped into the global model as an initial load to simulate the welding assembly deformation. Then the deformation distribution of the side beam was obtained by elastic finite element method, and compared with the measurement results. Furthermore, the welding deformation under different welding sequences and constraints was simulated. The influence of the welding sequences and constraints on the side beam deformation was analyzed. The results indicate that the deformation is the smallest when the sequence is symmetrical and decreases with the increase in constraints.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11375122 and 11875197)
文摘The proton beam with energy around 100 MeV has seen wide applications in modern scientific research and in various fields.However,proton sources in China fall short for meeting experimental needs owing to the vast size and expensive traditional proton accelerators.The Institute of Nuclear Science and Technology of Sichuan University proposed to build a 3 GHz side-coupled cavity linac(SCL)for re-accelerating a 26 MeV proton beam extracted from a CS-30 cyclotron to 120 MeV.We carried out investigations into several vital factors of S-band SCL for proton acceleration,such as optimization of SCL cavity geometry,end cell tuning,and bridge coupler design.Results demonstrated that the effective shunt impedance per unit length ranged from 22.5 to 59.8 MX/m throughout the acceleration process,and the acceleration gradient changed from 11.5 to 15.7 MV/m when the maximum surface electric field was equivalent to Kilpatrick electric field.We obtained equivalent circuit parameters of the biperiodic structures and applied them to the end cell tuning;results of the theoretical analysis agreed well with the 3D simulation.We designed and optimized a bridge coupler based on the previously obtained biperiodic structure parameters,and the field distribution un-uniformness was\1.5%for a two-tank module.The radio frequency power distribution system of the linac was obtained based on the preliminary beam dynamics design.
基金provided through the Putra Grant IPS(GP-IPS/2016/9515100)。
文摘The enforcement on sustainable design and environmental-friendly products has attracted the interest of researchers and engineers in the context of replacing metals and synthetic fibers with natural based fibers,especially in the automotive industry.However,studies on sustainable natural fiber material selection in the automotive industry are limited.Evaluation for the side-door impact beam was conducted by gathering product design specification from literature which amounted to seven criteria and it was forwarded to ten decision makers with automotive engineering and product design background for evaluation.The weightage required for decision-making was obtained using the Analytic Hierarchy Process(AHP)method based on six criteria.Following this,the best natural fiber materials to be used as reinforcement in polymer composites were selected using the VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.The results using both the AHP and VIKOR method showed that kenaf was the best natural fiber for the side-door impact beam composites.The result showed the lowest VIKOR value,QA1=0.0000,which was determined to be within the acceptable advantage and acceptable stability conditions.It can be concluded that the application of integrated AHP-VIKOR method resulted in a systematic and justified solution towards the decision-making process.
文摘The welding deformation is a key factor affecting the production quality of the side beam of the subway bogie frame. A major issue is how to control the welding deformation during the manufacturing processes. Based on the "Local- Global" method, the thermal cycle and the stress of a local model extracted from the global side beam model were simulated. The simulated strain result was mapped into the global model as an initial load to simulate the welding assembly deformation. Then the deformation distribution of the side beam was obtained by elastic finite element method, and compared with the measurement results. Furthermore, the welding deformation under different welding sequences and constraints was simulated. The influence of the welding sequences and constraints on the side beam deformation was analyzed. The results indicate that the deformation is the smallest when the sequence is symmetrical and decreases with the increase in constraints.