期刊文献+
共找到541篇文章
< 1 2 28 >
每页显示 20 50 100
基于孪生网络结构的目标跟踪算法综述 被引量:29
1
作者 陈云芳 吴懿 张伟 《计算机工程与应用》 CSCD 北大核心 2020年第6期10-18,共9页
近年来相关滤波和深度学习理论快速发展,在目标跟踪中得到广泛应用,但在精度或者速度方面存在问题,基于孪生网络结构的方法能够在精度和速度之间取得平衡,逐渐成为了目标跟踪的主流方法。介绍了目标跟踪技术的基本概念,分析相关滤波等... 近年来相关滤波和深度学习理论快速发展,在目标跟踪中得到广泛应用,但在精度或者速度方面存在问题,基于孪生网络结构的方法能够在精度和速度之间取得平衡,逐渐成为了目标跟踪的主流方法。介绍了目标跟踪技术的基本概念,分析相关滤波等传统方法的发展及其存在的不足。着重阐述孪生网络的结构和基于孪生网络结构的跟踪算法的设计原理及其最新进展,并对比相关方法的性能。针对现有基于孪生网络结构的跟踪方法的不足,展望未来的发展趋势。 展开更多
关键词 目标跟踪 孪生网络 深度学习
下载PDF
基于孪生网络和长短时记忆网络结合的配电网短期负荷预测 被引量:26
2
作者 葛磊蛟 赵康 +2 位作者 孙永辉 王尧 牛峰 《电力系统自动化》 EI CSCD 北大核心 2021年第23期41-50,共10页
保证数据驱动型配电网短期负荷预测精准的关键是选取合适的相似日数据集和构建合理的日负荷预测模型。文中研究了一种基于孪生网络(SN)和长短时记忆(LSTM)网络相结合的配电网短期负荷预测模型。基于配电网负荷相似日的影响因素具有多样... 保证数据驱动型配电网短期负荷预测精准的关键是选取合适的相似日数据集和构建合理的日负荷预测模型。文中研究了一种基于孪生网络(SN)和长短时记忆(LSTM)网络相结合的配电网短期负荷预测模型。基于配电网负荷相似日的影响因素具有多样化、强随机性的特点,利用SN两个输入权重共享的特点对历史负荷数据进行分析,进而对待测日的特征进行分类,以完成相似日数据选取。此外,利用灰狼优化算法全局搜索能力强、收敛速度快等特点,对基于LSTM网络的配电网短期负荷预测模型进行参数优化。最后,以某一个区域配电网的实际数据为例,验证上述预测方法的准确性与鲁棒性,与LSTM网络、基于粒子群优化的LSTM网络、支持向量机等方法对比可知,所提方法具有较高的准确度和计算效率。 展开更多
关键词 配电网 孪生网络 灰狼优化算法 长短时记忆网络 负荷预测
下载PDF
基于相关滤波的目标跟踪算法研究综述 被引量:25
3
作者 孟晓燕 段建民 《北京工业大学学报》 CAS CSCD 北大核心 2020年第12期1393-1416,共24页
基于相关滤波理论的判别式跟踪方法由于其高效性和鲁棒性,已经取得了一系列的进展,成为了目标跟踪领域的研究热门.为了使更多国内外学者对相关滤波目标跟踪理论及其发展进行进一步研究与探索,对该领域研究现状进行综述.首先,介绍了相关... 基于相关滤波理论的判别式跟踪方法由于其高效性和鲁棒性,已经取得了一系列的进展,成为了目标跟踪领域的研究热门.为了使更多国内外学者对相关滤波目标跟踪理论及其发展进行进一步研究与探索,对该领域研究现状进行综述.首先,介绍了相关滤波理论及其用于实现目标跟踪任务时的一般框架,并重点描述了典型的核相关滤波跟踪方法.其次,讨论了目标跟踪技术应用于实际场景时面临的诸多难题,详细分析了特征表示和自适应尺度更新这2个主要难点.然后,从基本类相关滤波、部件类相关滤波、正则化类相关滤波和Siamese网络类相关滤波这4个类别对具有代表性的算法进行分析与讨论,并指出了未来可能的发展趋势.最后,在OTB2013和OTB100基准数据集上对32种相关滤波类跟踪算法就精确度、成功率和帧率进行了对比,在VOT2017数据集上对10种相关滤波类跟踪算法就平均重叠期望(expected average overlap,EAO)、Accuracy和Robustness三个性能指标进行了对比,体现了相关滤波跟踪器(correlation filter trackers,CFTs)的优越性.尽管相关滤波理论在目标跟踪领域具有广阔的应用前景,但是复杂场景和自身因素的影响导致其仍然是一个极具挑战性的研究方向,研究兼备准确性与鲁棒性的CFTs对于目标跟踪领域的发展具有重要意义. 展开更多
关键词 机器视觉 目标跟踪 相关滤波 特征表示 尺度更新 孪生网络 性能指标
下载PDF
融合多尺度局部特征与深度特征的双目立体匹配 被引量:20
4
作者 王旭初 刘辉煌 牛彦敏 《光学学报》 EI CAS CSCD 北大核心 2020年第2期113-125,共13页
针对立体匹配中不适定区域难以找到精确匹配点的问题,提出一种融合多尺度局部特征与深度特征的立体匹配方法。特征融合阶段包括两部分,其一是融合不同尺度下Log-Gabor特征和局部二值模式特征组合的浅层次特征,其二是将多尺度浅层融合特... 针对立体匹配中不适定区域难以找到精确匹配点的问题,提出一种融合多尺度局部特征与深度特征的立体匹配方法。特征融合阶段包括两部分,其一是融合不同尺度下Log-Gabor特征和局部二值模式特征组合的浅层次特征,其二是将多尺度浅层融合特征和卷积神经网络提取的深度特征进行级联,形成既包含语义信息又包含结构化信息的特征图像。通过在极线垂直方向添加不同强度的噪声来构造正负样本,减小图像中极线对齐欠准带来的误差。将该方法与两种变体方法(改变或舍弃部分模块)在KITTI数据集进行对比实验,结果表明各模块设置具有合理性;与一些经典方法相比,所提方法取得了有竞争力的匹配性能。 展开更多
关键词 机器视觉 立体匹配 多尺度局部特征融合 浅层次特征 孪生网络 卷积神经网络
原文传递
基于自适应Siamese网络的无人机目标跟踪算法 被引量:18
5
作者 刘芳 杨安喆 吴志威 《航空学报》 EI CAS CSCD 北大核心 2020年第1期243-255,共13页
无人机已被广泛应用到军事和民用领域,目标跟踪是无人机应用的关键技术之一。针对无人机跟踪过程中目标易发生形变、遮挡等问题,提出一种基于自适应Siamese网络的无人机目标跟踪算法。首先,利用2个卷积网络构建一个5层Siamese网络,通过... 无人机已被广泛应用到军事和民用领域,目标跟踪是无人机应用的关键技术之一。针对无人机跟踪过程中目标易发生形变、遮挡等问题,提出一种基于自适应Siamese网络的无人机目标跟踪算法。首先,利用2个卷积网络构建一个5层Siamese网络,通过对模板特征与当前帧图像特征进行卷积得到目标位置;其次,利用高斯混合模型对以往的预测结果进行建模并建立目标模板库;然后,从模板库中挑选出最可靠的目标模板并以此更新Siamese网络的匹配模板,使Siamese网络能够自适应目标的外观变化;最后,引入回归模型进一步精确目标位置,降低背景对网络性能的影响。仿真实验结果表明:该算法有效降低了形变、遮挡等情况对跟踪性能的影响,具有较高的准确率。 展开更多
关键词 无人机 目标跟踪 siamese网络 模板匹配 自适应更新
原文传递
小样本条件下基于卷积孪生网络的变压器故障诊断 被引量:19
6
作者 朱瑞金 郝东光 胡石峰 《电力系统及其自动化学报》 CSCD 北大核心 2021年第1期64-69,84,共7页
为提高小样本条件下变压器故障诊断的准确率,提出了一种小样本条件下基于卷积孪生网络CSNN(convolutional Siamese neural network)的变压器故障诊断方法。利用具有强大特征提取能力的卷积层和池化层来构建孪生网络将原始数据映射到低... 为提高小样本条件下变压器故障诊断的准确率,提出了一种小样本条件下基于卷积孪生网络CSNN(convolutional Siamese neural network)的变压器故障诊断方法。利用具有强大特征提取能力的卷积层和池化层来构建孪生网络将原始数据映射到低维空间。并基于欧式距离进行相似度的对比,从而实现故障的分类。仿真结果表明,CSNN比传统方法更加适合小样本条件下的变压器故障诊断,利用卷积层和池化层来构建孪生网络比仅用全连接层来构建孪生网络会收获更高的准确率。 展开更多
关键词 变压器 故障诊断 小样本 孪生网络
下载PDF
深度卷积特征表达的多模态遥感影像模板匹配方法 被引量:16
7
作者 南轲 齐华 叶沅鑫 《测绘学报》 EI CSCD 北大核心 2019年第6期727-736,共10页
多模态遥感影像间(光学、红外、SAR等)存在显著的非线性辐射差异,传统方法难以有效地提取影像间的共有特征,匹配效果不佳.鉴于此,本文将深度学习方法引入影像匹配中,提出了一种基于Siamese网络提取多模态影像共有特征的匹配方法.首先通... 多模态遥感影像间(光学、红外、SAR等)存在显著的非线性辐射差异,传统方法难以有效地提取影像间的共有特征,匹配效果不佳.鉴于此,本文将深度学习方法引入影像匹配中,提出了一种基于Siamese网络提取多模态影像共有特征的匹配方法.首先通过去除Siamese网络中的池化层和抽取特征来优化该网络,保持特征信息的完整性和位置精度,使其可有效地提取多模态影像间的共有特征,然后采用模板匹配策略,实现多模态遥感影像高精度匹配.通过利用多组多模态遥感影像进行试验,结果表明,本文方法的匹配正确率和匹配精度都优于传统的模板匹配方法. 展开更多
关键词 多模态影像 影像匹配 深度学习 siamese网络
下载PDF
基于联合注意力孪生网络目标跟踪算法 被引量:16
8
作者 杨梅 贾旭 +1 位作者 殷浩东 孙福明 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第1期127-136,共10页
为改进在发生形变、尺度变化及相似目标等多种干扰因素时视频中运动目标的跟踪精度,提出了一种联合注意力的孪生网络模型。首先,采用一种轻量级网络MobileNetV3作为主干网络对目标进行特征提取;然后,为提高模型对于目标关键特征的关注度... 为改进在发生形变、尺度变化及相似目标等多种干扰因素时视频中运动目标的跟踪精度,提出了一种联合注意力的孪生网络模型。首先,采用一种轻量级网络MobileNetV3作为主干网络对目标进行特征提取;然后,为提高模型对于目标关键特征的关注度,提出了通道联合空间注意力与孪生网络结合的模型结构;最后,对基于注意力模块与非注意力模块的特征向量互相关结果进行加权融合获得响应图,并利用该响应图获得目标跟踪结果。实验结果表明,所提算法在OTB50与OTB100数据集上能够获得较好的跟踪效果,两个数据集平均精确率和成功率达到78.5%和58.3%。此外,当存在形变、尺度变化及相似目标等不合作因素时,所提算法仍能取得较好的跟踪效果,从而表明该算法具有良好的鲁棒性。 展开更多
关键词 目标跟踪 孪生网络 联合注意力 MobileNetV3
下载PDF
视觉单目标跟踪算法综述 被引量:16
9
作者 汤一明 刘玉菲 黄鸿 《测控技术》 2020年第8期21-34,共14页
目标跟踪技术根据视频上下文信息,建立一个跟踪模型对目标的运动状态进行预测,被广泛用于智能视频监控、自动驾驶、机器人导航、人机交互等多个计算机视觉领域。随着深度学习在语音识别,图像分类以及目标检测等领域的巨大成功,越来越多... 目标跟踪技术根据视频上下文信息,建立一个跟踪模型对目标的运动状态进行预测,被广泛用于智能视频监控、自动驾驶、机器人导航、人机交互等多个计算机视觉领域。随着深度学习在语音识别,图像分类以及目标检测等领域的巨大成功,越来越多的研究将深度学习框架应用于目标跟踪任务中。介绍了当前单目标跟踪任务的难点和传统的方法,重点分析了当前基于深度学习的单目标跟踪算法的发展现状,从预训练网络+相关滤波算法、基于孪生网络的方法、基于卷积神经网络的方法、基于生成对抗网络的方法以及其他深度学习方法几个方面,分别对当前流行的深度学习目标跟踪算法进行了概述。此外,总结了用于评测单目标跟踪算法性能的代表性数据集,列举了最新的研究成果在不同数据集上的实验结果并分析了当前单目标跟踪领域的问题和趋势。 展开更多
关键词 视觉跟踪 深度学习 相关滤波 孪生网络 生成对抗网络 卷积神经网络
下载PDF
基于深度学习的人脸识别方法研究 被引量:13
10
作者 胡少聪 《电子科技》 2019年第6期82-86,共5页
作为非接触式生物识别方法之一,人脸识别在诸多情况下被广泛使用。然而,传统的人脸识别方法由于识别准确度低以及在多个场合的应用受到限制,已不能满足目前的需求。文中提出了采用深度学习的方法来实现脸部标志检测和无限制人脸识别。... 作为非接触式生物识别方法之一,人脸识别在诸多情况下被广泛使用。然而,传统的人脸识别方法由于识别准确度低以及在多个场合的应用受到限制,已不能满足目前的需求。文中提出了采用深度学习的方法来实现脸部标志检测和无限制人脸识别。为解决人脸标志检测问题,使用一种深层卷积神经网络的逐层训练方法,以帮助卷积神经网络进行收敛,并提出了一种避免过拟合的样本变换方法;为了解决人脸识别问题,文中提出了一种SIAMESE卷积神经网络,其在不同部位和尺度上进行训练。实验测试显示,ORL和人脸识别算法的精度分别达到了91%和81%。 展开更多
关键词 脸部标志检测 无限制人脸识别 深度学习 卷积神经网络 siamese网络
下载PDF
基于孪生网络的小样本滚动轴承故障诊断研究 被引量:12
11
作者 徐卓飞 李旭东 +2 位作者 张婵婵 侯和平 张武 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第10期241-251,共11页
针对小样本和强噪声条件下的滚动轴承故障诊断问题,提出了一种孪生网络模型:首先,对于滚动轴承故障信号进行连续小波变换以获得时频图像,引入卷积神经网络模型以实现故障图像模式识别;进而,对故障样本进行交叉配对以重新组合,实现了少... 针对小样本和强噪声条件下的滚动轴承故障诊断问题,提出了一种孪生网络模型:首先,对于滚动轴承故障信号进行连续小波变换以获得时频图像,引入卷积神经网络模型以实现故障图像模式识别;进而,对故障样本进行交叉配对以重新组合,实现了少量故障样本的大幅扩容;同时,针对扩容后样本对数据构建了包含两个子模型的孪生网络模型;最后,为了实现强噪声、小样本条件下滚动轴承故障诊断,设计了孪生网络末端专用分类器,在加噪声数据库和机械故障实验中对方法进行测试,分别达到了96.25%和97.08%正确率。所提出模型能够依靠少量样本完成训练并实现轴承故障准确诊断,所需每类样本的数量可减少至20个,与经典卷积神经网络模型相比具有明显优势。 展开更多
关键词 孪生网络 卷积神经网络 连续小波变换 故障诊断
下载PDF
面向边缘计算应用的宽度孪生网络 被引量:12
12
作者 李逸楷 张通 陈俊龙 《自动化学报》 EI CSCD 北大核心 2020年第10期2060-2071,共12页
边缘计算是将计算、存储、通信等任务分配到网络边缘的计算模式.它强调在用户终端附近执行数据处理过程,以达到降低延迟,减少能耗,保护用户隐私等目的.然而网络边缘的计算、存储、能源资源有限,这给边缘计算应用的推广带来了新的挑战.... 边缘计算是将计算、存储、通信等任务分配到网络边缘的计算模式.它强调在用户终端附近执行数据处理过程,以达到降低延迟,减少能耗,保护用户隐私等目的.然而网络边缘的计算、存储、能源资源有限,这给边缘计算应用的推广带来了新的挑战.随着边缘智能的兴起,人们更希望将边缘计算应用与人工智能技术结合起来,为我们的生活带来更多的便利.许多人工智能方法,如传统的深度学习方法,需要消耗大量的计算、存储资源,并且伴随着巨大的时间开销.这不利于强调低延迟的边缘计算应用的推广.为了解决这个问题,我们提出将宽度学习系统(Broad learning system,BLS)等浅层网络方法应用到边缘计算应用领域,并且设计了一种宽度孪生网络算法.我们将宽度学习系统与孪生网络结合起来用于解决分类问题.实验结果表明我们的方法能够在取得与传统深度学习方法相似精度的情况下降低时间和资源开销,从而更好地提高边缘计算应用的性能. 展开更多
关键词 宽度学习系统 边缘计算 孪生网络 浅层网络 边缘智能
下载PDF
基于目标感知特征筛选的孪生网络跟踪算法 被引量:12
13
作者 陈志旺 张忠新 +2 位作者 宋娟 罗红福 彭勇 《光学学报》 EI CAS CSCD 北大核心 2020年第9期104-120,共17页
孪生网络跟踪算法是利用离线训练好的网络提取目标特征并进行匹配,从而实现跟踪。而离线训练深度特征在表征任意形式目标时将目标从背景中分离开的性能较差。为此,提出一种基于目标感知特征筛选的孪生网络跟踪算法。将经过裁剪处理后的... 孪生网络跟踪算法是利用离线训练好的网络提取目标特征并进行匹配,从而实现跟踪。而离线训练深度特征在表征任意形式目标时将目标从背景中分离开的性能较差。为此,提出一种基于目标感知特征筛选的孪生网络跟踪算法。将经过裁剪处理后的模板帧和检测帧送入到ResNet50的特征提取网络分别提取目标和搜索区域的浅层、中层、深层特征;在目标感知模块中,通过设计一个回归损失函数来学习对目标敏感的特征,根据反向传播的梯度来确定每个卷积核的重要性程度,并以此来激活相对重要的卷积核筛选较重要的目标感知特征;将筛选得到的特征送入到SiamRPN模块,进行目标、背景的二分类判别和边界框的坐标回归,从而得到一个精确的目标边界框。在OTB2015和VOT2018两个标准数据集上进行测试实验,结果表明该算法可以实现对目标的稳健性跟踪。 展开更多
关键词 机器视觉 目标跟踪 孪生网络 目标感知
原文传递
融合注意力机制的孪生网络目标跟踪算法研究 被引量:12
14
作者 王玲 王家沛 +1 位作者 王鹏 孙爽滋 《计算机工程与应用》 CSCD 北大核心 2021年第8期169-174,共6页
在全卷积孪生网络跟踪算法(SiamFC)的基础上,提出一种融合注意力机制的孪生网络目标跟踪算法。在网络模板分支,通过融合注意力机制,由神经网络学习模板图像的通道相关性和空间相关性,进而增大前景贡献,抑制背景特征,提升网络对正样本特... 在全卷积孪生网络跟踪算法(SiamFC)的基础上,提出一种融合注意力机制的孪生网络目标跟踪算法。在网络模板分支,通过融合注意力机制,由神经网络学习模板图像的通道相关性和空间相关性,进而增大前景贡献,抑制背景特征,提升网络对正样本特征的辨别力;同时,使用VggNet-19网络提取模板图像的浅层特征和深层特征,两种特征自适应融合。在OTB2015和VOT2018数据集上得到的实验结果表明,与SiamFC相比,所提算法能够更好地应对运动模糊、目标漂移和背景多变等问题,取得了更高的准确率和成功率。 展开更多
关键词 目标跟踪 孪生网络 特征融合 注意力机制
下载PDF
基于帧间差异的人脸篡改视频检测方法 被引量:12
15
作者 张怡暄 李根 +1 位作者 曹纭 赵险峰 《信息安全学报》 CSCD 2020年第2期49-72,共24页
近几年,随着计算机硬件设备的不断更新换代和深度学习技术的不断发展,新出现的多媒体篡改工具可以让人们更容易地对视频中的人脸进行篡改。使用这些新工具制作出的人脸篡改视频几乎无法被肉眼所察觉,因此我们急需有效的手段来对这些人... 近几年,随着计算机硬件设备的不断更新换代和深度学习技术的不断发展,新出现的多媒体篡改工具可以让人们更容易地对视频中的人脸进行篡改。使用这些新工具制作出的人脸篡改视频几乎无法被肉眼所察觉,因此我们急需有效的手段来对这些人脸篡改视频进行检测。目前流行的视频人脸篡改技术主要包括以自编码器为基础的Deepfake技术和以计算机图形学为基础的Face2face技术。我们注意到人脸篡改视频里人脸区域的帧间差异要明显大于未被篡改的视频中人脸区域的帧间差异,因此视频相邻帧中人脸图像的差异可以作为篡改检测的重要线索。在本文中,我们提出一种新的基于帧间差异的人脸篡改视频检测框架。我们首先使用一种基于传统手工设计特征的检测方法,即基于局部二值模式(Local binary pattern,LBP)/方向梯度直方图(Histogram of oriented gradient,HOG)特征的检测方法来验证该框架的有效性。然后,我们结合一种基于深度学习的检测方法,即基于孪生网络的检测方法进一步增强人脸图像特征表示来提升检测效果。在FaceForensics++数据集上,基于LBP/HOG特征的检测方法有较高的检测准确率,而基于孪生网络的方法可以达到更高的检测准确率,且该方法有较强的鲁棒性;在这里,鲁棒性指一种检测方法可以在三种不同情况下达到较高的检测准确率,这三种情况分别是:对视频相邻帧中人脸图像差异用两种不同方式进行表示、提取三种不同间隔的帧对来计算帧间差异以及训练集与测试集压缩率不同。 展开更多
关键词 视频篡改 篡改检测 帧间差异 孪生网络 Deepfake Face2face
下载PDF
基于双重注意力孪生网络的实时视觉跟踪 被引量:11
16
作者 杨康 宋慧慧 张开华 《计算机应用》 CSCD 北大核心 2019年第6期1652-1656,共5页
为了解决全卷积孪生网络(SiamFC)跟踪算法在跟踪目标经历剧烈的外观变化时容易发生模型漂移从而导致跟踪失败的问题,提出了一种双重注意力机制孪生网络(DASiam)去调整网络模型并且不需要在线更新。首先,主干网络使用修改后表达能力更强... 为了解决全卷积孪生网络(SiamFC)跟踪算法在跟踪目标经历剧烈的外观变化时容易发生模型漂移从而导致跟踪失败的问题,提出了一种双重注意力机制孪生网络(DASiam)去调整网络模型并且不需要在线更新。首先,主干网络使用修改后表达能力更强的并适用于目标跟踪任务的VGG网络;然后,在网络的中间层加入一个新的双重注意力机制去动态地提取特征,这种机制由通道注意机制和空间注意机制组成,分别对特征图的通道维度和空间维度进行变换得到双重注意特征图;最后,通过融合两个注意机制的特征图进一步提升模型的表征能力。在三个具有挑战性的跟踪基准库即OTB2013、OTB100和2017年视觉目标跟踪库(VOT2017)实时挑战上进行实验,实验结果表明,以40 frame/s的速度运行时,所提算法在OTB2013和OTB100上的成功率指标比基准SiamFC分别高出3.5个百分点和3个百分点,并且在VOT2017实时挑战上面超过了2017年的冠军SiamFC,验证了所提出算法的有效性。 展开更多
关键词 卷积神经网络 视觉跟踪 注意力机制 孪生网络
下载PDF
基于双模板Siamese网络的鲁棒视觉跟踪算法 被引量:10
17
作者 侯志强 陈立琳 +2 位作者 余旺盛 马素刚 范九伦 《电子与信息学报》 EI CSCD 北大核心 2019年第9期2247-2255,共9页
近年来,Siamese网络由于其良好的跟踪精度和较快的跟踪速度,在视觉跟踪领域引起极大关注,但大多数Siamese网络并未考虑模型更新,从而引起跟踪错误。针对这一不足,该文提出一种基于双模板Siamese网络的视觉跟踪算法。首先,保留响应图中... 近年来,Siamese网络由于其良好的跟踪精度和较快的跟踪速度,在视觉跟踪领域引起极大关注,但大多数Siamese网络并未考虑模型更新,从而引起跟踪错误。针对这一不足,该文提出一种基于双模板Siamese网络的视觉跟踪算法。首先,保留响应图中响应值稳定的初始帧作为基准模板R,同时使用改进的APCEs模型更新策略确定动态模板T。然后,通过对候选目标区域与2个模板匹配度结果的综合分析,对结果响应图进行融合,以得到更加准确的跟踪结果。在OTB2013和OTB2015数据集上的实验结果表明,与当前5种主流跟踪算法相比,该文算法的跟踪精度和成功率具有明显优势,不仅在尺度变化、平面内旋转、平面外旋转、遮挡、光照变化情况下具有较好的跟踪效果,而且达到了46帧/s的跟踪速度。 展开更多
关键词 siamese网络 目标跟踪 双模板 模板更新
下载PDF
基于深度学习表示的医学主题语义相似度计算及知识发现研究 被引量:11
18
作者 沈思 孙豪 王东波 《情报理论与实践》 CSSCI 北大核心 2020年第5期183-190,共8页
[目的/意义]针对目前医学文本中疾病-基因等实体关联关系在知识发现中结合主题的研究较少,不足以揭示医学领域知识在主题层面的深层语义关联关系,提出了一套结合全文文本和领域知识主题的语义相似度计算方法。[方法/过程]以肿瘤期刊全... [目的/意义]针对目前医学文本中疾病-基因等实体关联关系在知识发现中结合主题的研究较少,不足以揭示医学领域知识在主题层面的深层语义关联关系,提出了一套结合全文文本和领域知识主题的语义相似度计算方法。[方法/过程]以肿瘤期刊全文本为研究对象,用TWE模型进行词向量和主题向量的词嵌入表示,基于Siamese Network框架结合文本和领域知识主题进行相似度计算。[结果/结论]实验表明,该研究所提出的相似度计算方法在验证集中的预测F值达94%,最后通过对测试集数据进行聚类分析,从高、中、低频以及未进行临床注册实验的角度对疾病和关联基因进行分析,发现当前的热门研究以及未来可能成为研究热点的靶点基因。 展开更多
关键词 深度学习 语义相似度 孪生神经网络 知识发现
原文传递
基于改进DeepLabv3+孪生网络的遥感影像变化检测方法 被引量:10
19
作者 赵祥 王涛 +3 位作者 张艳 郑迎辉 张昆 王龙辉 《地球信息科学学报》 CSCD 北大核心 2022年第8期1604-1616,共13页
传统遥感影像变化检测方法依赖人工构建特征,算法设计复杂且精度不高;而将2幅不同时相影像叠加后输入神经网络的遥感影像变化检测方法会造成不同时相的特征相互影响,难以保持原始影像的高维特征,且模型鲁棒性较差。因此,本文提出一种基... 传统遥感影像变化检测方法依赖人工构建特征,算法设计复杂且精度不高;而将2幅不同时相影像叠加后输入神经网络的遥感影像变化检测方法会造成不同时相的特征相互影响,难以保持原始影像的高维特征,且模型鲁棒性较差。因此,本文提出一种基于改进DeepLabv3+孪生网络的遥感影像变化检测方法,以经典DeepLabv3+网络的编解码结构为基础对网络进行改进:(1)在编码阶段利用共享权值的孪生网络提取特征,通过2个输入端分别接收2幅遥感影像,以保留不同时相影像的高维特征;(2)在特征融合中用密集空洞空间金字塔池化模型代替空洞空间金字塔池化模型,通过密集连接的方式结合每个空洞卷积的输出,以提高对不同尺度目标分割的精度;(3)在解码阶段中针对不同层级特征图信息差异较大,难以融合的问题,引入基于注意力机制的特征对齐模型,引导不同层级的特征对齐并强化学习重要特征,以提升模型的鲁棒性。应用开源数据集CDD验证本文方法的有效性,并与UNet-EF、FC-Siam-conc、Siam-DeepLabv3+和N-Siam-DeepLabv3+网络对比试验。试验结果表明,本文方法在精确率、召回率、F1值和总体精度上达到87.3%、90.2%、88.4%、96.4%,均高于UNet-EF、FC-Siamconc、Siam-DeepLabv3+网络和N-Siam-DeepLabv3+网络,检测结果较为完整,对边界的检测也更为平滑,且对尺度变化具有更高的鲁棒性。 展开更多
关键词 变化检测 孪生网络 DeepLabv3+ DenseASPP 特征对齐 ASPP 注意力机制 深度学习
原文传递
结合卷积Transformer的目标跟踪算法 被引量:6
20
作者 王春雷 张建林 +2 位作者 李美惠 徐智勇 魏宇星 《计算机工程》 CAS CSCD 北大核心 2023年第4期281-288,296,共9页
现有基于Transformer的目标跟踪算法未充分利用Transformer的长距离依赖属性,导致算法提取的特征判别性不足,跟踪稳定性较差。为提高孪生网络目标跟踪算法在复杂场景中的跟踪能力,结合卷积与Transformer的优势,提出目标跟踪算法CTTrack... 现有基于Transformer的目标跟踪算法未充分利用Transformer的长距离依赖属性,导致算法提取的特征判别性不足,跟踪稳定性较差。为提高孪生网络目标跟踪算法在复杂场景中的跟踪能力,结合卷积与Transformer的优势,提出目标跟踪算法CTTrack。在特征提取方面,利用卷积丰富的局部信息和Transformer的长距离依赖属性,以卷积和窗口注意力串联的方式和层次化的结构构建一个通用的目标跟踪骨干网络CTFormer。在特征融合方面,利用互注意力机制构建特征互增强与聚合网络以简化网络结构,加快跟踪速度。在搜索区域选择方面,结合目标运动速度估计,设计自适应调整搜索区域的跟踪策略。实验结果表明,CTTrack在GOT-10k数据集上的平均重叠度为70.3%,相比基于Transformer的跟踪算法TransT和TrDiMP均提高3.2个百分点,在UAV123数据集上的曲线下面积为71.1%,相比TransT和TrDiMP分别提高2.0个百分点和3.6个百分点。在TrackingNet、LaSOT、OTB2015、NFS数据集上分别取得82.1%、66.8%、70.1%、66.3%的曲线下面积,并能以43帧/s的速度进行实时跟踪。 展开更多
关键词 孪生网络 Transformer目标跟踪 窗口注意力 互注意力 运动估计 搜索区域
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部