A method of multi-block Single Shot Multi Box Detector(SSD)based on small object detection is proposed to the railway scene of unmanned aerial vehicle surveillance.To address the limitation of small object detection,a...A method of multi-block Single Shot Multi Box Detector(SSD)based on small object detection is proposed to the railway scene of unmanned aerial vehicle surveillance.To address the limitation of small object detection,a multi-block SSD mechanism,which consists of three steps,is designed.First,the original input images are segmented into several overlapped patches.Second,each patch is separately fed into an SSD to detect the objects.Third,the patches are merged together through two stages.In the first stage,the truncated object of the sub-layer detection result is spliced.In the second stage,a sub-layer suppression and filtering algorithm applying the concept of non-maximum suppression is utilized to remove the overlapped boxes of sub-layers.The boxes that are not detected in the main-layer are retained.In addition,no sufficient labeled training samples of railway circumstance are available,thereby hindering the deployment of SSD.A two-stage training strategy leveraging to transfer learning is adopted to solve this issue.The deep learning model is preliminarily trained using labeled data of numerous auxiliaries,and then it is refined using only a few samples of railway scene.A railway spot in China,which is easily damaged by landslides,is investigated as a case study.Experimental results show that the proposed multi-block SSD method produces an overall accuracy of 96.6%and obtains an improvement of up to 9.2%compared with the traditional SSD.展开更多
Shot peening can improve fatigue strength of materials by creating compressive residual stress field in their surface layers,and offers a protection against crack initiation and propagation,corrosion,etc.And fatigue f...Shot peening can improve fatigue strength of materials by creating compressive residual stress field in their surface layers,and offers a protection against crack initiation and propagation,corrosion,etc.And fatigue fracture and stress corrosion cracking of NAK80 steel parts are improved effectively.Currently there lacks in-depth research in which the beneficial effect of the residual stress may be offset by the surface damage associated with shot peening,especially in terms of the research on the effective control of shot peening intensity.In order to obtain the surface residual stress field of NAK80 steel after shot peening,the samples are shot peened by pneumatic shot peening machine with different rules.The residual stress in the precipitation-hardening layer of NAK80 steel is measured before and after a shot peening treatment by X-ray diffraction method.In order to obtain true residual stress field,integral compensation method is used to correct results.By setting up analytical model of the residual stress in the process of shot peening,the surface residual stress is calculated after shot peening,and mentioning the reason of errors occurred between calculated and experimental residual stresses,which is mainly caused by the measurement error of the shoot arc height.At the same time,micro hardness,microstructure and roughness in the precipitation-hardening layer of NAK80 steel before and after shot peening were measured and surveyed in order to obtain the relation between shot peening strength and surface quality in the precipitation-hardening layer.The results show that the surface quality of NAK80 steel is significantly improved by shot peening process.The over peening effect is produced when the shot peening intensity is too high,it is disadvantageous to improve sample's surface integrity,and leading to reduce the fatigue life.When arc high value of optimal shot peening is 0.40 mm,the surface quality is the best,and the depth of residual stress in the precipitation-hardening layer reaches to about 450 μm展开更多
A new technology-rotationally accelerated shot peening(RASP), was developed to prepare gradient structured materials. By using centrifugal acceleration principle and large steel balls, the RASP technology can produc...A new technology-rotationally accelerated shot peening(RASP), was developed to prepare gradient structured materials. By using centrifugal acceleration principle and large steel balls, the RASP technology can produce much higher impact energy compared to conventional shot peening. As a proof-of-concept demonstration, the RASP was utilized to refine the surface layer in pure copper(Cu) with an average grain size of 85 nm. The grain size increases largely from surface downwards the bulk, forming an800 ?m thick gradient-structured surface layer and consequently a micro-hardness gradient. The difference between the RASP technology and other established techniques in preparing gradient structured materials is discussed. The RASP technology exhibits a promoting future for large-scale manufacturing of gradient materials.展开更多
Using a modified 3D random representative volume(RV)finite element model,the effects of model dimensions(impact region and interval between impact and representative regions),model shapes(rectangular,square,and c...Using a modified 3D random representative volume(RV)finite element model,the effects of model dimensions(impact region and interval between impact and representative regions),model shapes(rectangular,square,and circular),and peening-induced thermal softening on resultant critical quantities(residual stress,Almen intensity,coverage,and arc height)after shot peening are systematically examined.A new quantity,i.e.,the interval between impact and representative regions,is introduced and its optimal value is first determined to eliminate any boundary effect on shot peening results.Then,model dimensions are respectively assessed for all model shapes to reflect the actual shot peening process,based on which shape-independent critical shot peening quantities are obtained.Further,it is found that thermal softening of the target material due to shot peening leads to variances of the surface residual stress and arc height,demonstrating the necessity of considering the thermal effect in a constitutive material model of shot peeing.Our study clarifies some of the finite element modeling aspects and lays the ground for accurate modeling of the SP process.展开更多
Taking account of shot noise, thermal noise, dark current noise, and intensity noise that come from broad band light source, the dependence of the random walk coefficient of fiber optic gyroscope (FOG) on bias phase...Taking account of shot noise, thermal noise, dark current noise, and intensity noise that come from broad band light source, the dependence of the random walk coefficient of fiber optic gyroscope (FOG) on bias phase and light power is studied theoretically and experimentally. It is shown that with different optical and electronic parameters, the optimal bias phase is different and should be adjusted accordingly to improve the FOG precision. By choosing appropriate bias phase, the random walk coefficient of the aim FOG is reduced from 0.0026 to 0.0019 deg./h^1/2.展开更多
基金supported by Beijing Natural Science Foundation,China(No.4182020)Open Fund of State Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,China(No.17E01)Key Laboratory for Health Monitoring and Control of Large Structures,Shijiazhuang,China(No.KLLSHMC1901)。
文摘A method of multi-block Single Shot Multi Box Detector(SSD)based on small object detection is proposed to the railway scene of unmanned aerial vehicle surveillance.To address the limitation of small object detection,a multi-block SSD mechanism,which consists of three steps,is designed.First,the original input images are segmented into several overlapped patches.Second,each patch is separately fed into an SSD to detect the objects.Third,the patches are merged together through two stages.In the first stage,the truncated object of the sub-layer detection result is spliced.In the second stage,a sub-layer suppression and filtering algorithm applying the concept of non-maximum suppression is utilized to remove the overlapped boxes of sub-layers.The boxes that are not detected in the main-layer are retained.In addition,no sufficient labeled training samples of railway circumstance are available,thereby hindering the deployment of SSD.A two-stage training strategy leveraging to transfer learning is adopted to solve this issue.The deep learning model is preliminarily trained using labeled data of numerous auxiliaries,and then it is refined using only a few samples of railway scene.A railway spot in China,which is easily damaged by landslides,is investigated as a case study.Experimental results show that the proposed multi-block SSD method produces an overall accuracy of 96.6%and obtains an improvement of up to 9.2%compared with the traditional SSD.
基金supported by National Natural Science Foundation of China (Grant No. 50772095)Jiangsu Provincial Key Laboratory of Precision and Micro-manufacturing Technology Foundation of China(Grant No. JSPM20 0705)
文摘Shot peening can improve fatigue strength of materials by creating compressive residual stress field in their surface layers,and offers a protection against crack initiation and propagation,corrosion,etc.And fatigue fracture and stress corrosion cracking of NAK80 steel parts are improved effectively.Currently there lacks in-depth research in which the beneficial effect of the residual stress may be offset by the surface damage associated with shot peening,especially in terms of the research on the effective control of shot peening intensity.In order to obtain the surface residual stress field of NAK80 steel after shot peening,the samples are shot peened by pneumatic shot peening machine with different rules.The residual stress in the precipitation-hardening layer of NAK80 steel is measured before and after a shot peening treatment by X-ray diffraction method.In order to obtain true residual stress field,integral compensation method is used to correct results.By setting up analytical model of the residual stress in the process of shot peening,the surface residual stress is calculated after shot peening,and mentioning the reason of errors occurred between calculated and experimental residual stresses,which is mainly caused by the measurement error of the shoot arc height.At the same time,micro hardness,microstructure and roughness in the precipitation-hardening layer of NAK80 steel before and after shot peening were measured and surveyed in order to obtain the relation between shot peening strength and surface quality in the precipitation-hardening layer.The results show that the surface quality of NAK80 steel is significantly improved by shot peening process.The over peening effect is produced when the shot peening intensity is too high,it is disadvantageous to improve sample's surface integrity,and leading to reduce the fatigue life.When arc high value of optimal shot peening is 0.40 mm,the surface quality is the best,and the depth of residual stress in the precipitation-hardening layer reaches to about 450 μm
基金supports from the National Natural Science Foundation of China (Grant No. 51301092)Pangu Foundation are acknowledged
文摘A new technology-rotationally accelerated shot peening(RASP), was developed to prepare gradient structured materials. By using centrifugal acceleration principle and large steel balls, the RASP technology can produce much higher impact energy compared to conventional shot peening. As a proof-of-concept demonstration, the RASP was utilized to refine the surface layer in pure copper(Cu) with an average grain size of 85 nm. The grain size increases largely from surface downwards the bulk, forming an800 ?m thick gradient-structured surface layer and consequently a micro-hardness gradient. The difference between the RASP technology and other established techniques in preparing gradient structured materials is discussed. The RASP technology exhibits a promoting future for large-scale manufacturing of gradient materials.
基金the financial support from China Scholarship Council (CSC) (No. 201406025083)National Natural Science Foundation of China (NSFC) (Nos. 51305012 and 51675024)+3 种基金Aviation Science Fund of China (No. 2014ZB51)financial support from NSFC (No. 51375031)financial support from NSFC (No. 51628101)National Sciences and Engineering Research Council (NSERC) Discovery grant (No. RGPIN 418469-2012)
文摘Using a modified 3D random representative volume(RV)finite element model,the effects of model dimensions(impact region and interval between impact and representative regions),model shapes(rectangular,square,and circular),and peening-induced thermal softening on resultant critical quantities(residual stress,Almen intensity,coverage,and arc height)after shot peening are systematically examined.A new quantity,i.e.,the interval between impact and representative regions,is introduced and its optimal value is first determined to eliminate any boundary effect on shot peening results.Then,model dimensions are respectively assessed for all model shapes to reflect the actual shot peening process,based on which shape-independent critical shot peening quantities are obtained.Further,it is found that thermal softening of the target material due to shot peening leads to variances of the surface residual stress and arc height,demonstrating the necessity of considering the thermal effect in a constitutive material model of shot peeing.Our study clarifies some of the finite element modeling aspects and lays the ground for accurate modeling of the SP process.
文摘Taking account of shot noise, thermal noise, dark current noise, and intensity noise that come from broad band light source, the dependence of the random walk coefficient of fiber optic gyroscope (FOG) on bias phase and light power is studied theoretically and experimentally. It is shown that with different optical and electronic parameters, the optimal bias phase is different and should be adjusted accordingly to improve the FOG precision. By choosing appropriate bias phase, the random walk coefficient of the aim FOG is reduced from 0.0026 to 0.0019 deg./h^1/2.