期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于时间卷积网络和门控循环单元的短期用电量预测方法
被引量:
13
1
作者
李扬帆
张凌浩
+3 位作者
雷勇
冉金周
叶桄希
张颉
《水电能源科学》
北大核心
2021年第8期198-201,173,共5页
针对智能电网建设环境下用电数据所呈现出的采集频率低、时变性显著等特点,提出了一种基于时间卷积网络和门控循环单元的短期用电量预测方法。考虑电类特征、环境特征和时间特征,从常见用户用电量的影响因素中筛选出模型的输入数据,分...
针对智能电网建设环境下用电数据所呈现出的采集频率低、时变性显著等特点,提出了一种基于时间卷积网络和门控循环单元的短期用电量预测方法。考虑电类特征、环境特征和时间特征,从常见用户用电量的影响因素中筛选出模型的输入数据,分别训练时间卷积网络和门控循环单元两种深度学习模型并建立所提方法的整体架构。对某地区低采集频率用电数据进行仿真分析,与传统的长短期记忆网络、一维卷积及多层感知机等方法相比,所提方法具有更高的预测精度,有效可行。
展开更多
关键词
短期用电量预测
时间卷积网络
门控循环单元
深度学习
下载PDF
职称材料
题名
基于时间卷积网络和门控循环单元的短期用电量预测方法
被引量:
13
1
作者
李扬帆
张凌浩
雷勇
冉金周
叶桄希
张颉
机构
四川大学电气工程学院
国网四川省电力公司电力科学研究院
川投信息产业集团有限公司
出处
《水电能源科学》
北大核心
2021年第8期198-201,173,共5页
文摘
针对智能电网建设环境下用电数据所呈现出的采集频率低、时变性显著等特点,提出了一种基于时间卷积网络和门控循环单元的短期用电量预测方法。考虑电类特征、环境特征和时间特征,从常见用户用电量的影响因素中筛选出模型的输入数据,分别训练时间卷积网络和门控循环单元两种深度学习模型并建立所提方法的整体架构。对某地区低采集频率用电数据进行仿真分析,与传统的长短期记忆网络、一维卷积及多层感知机等方法相比,所提方法具有更高的预测精度,有效可行。
关键词
短期用电量预测
时间卷积网络
门控循环单元
深度学习
Keywords
short
-
term
electricity consumption
forecast
TCN
GRU
deep
learning
分类号
TM715 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于时间卷积网络和门控循环单元的短期用电量预测方法
李扬帆
张凌浩
雷勇
冉金周
叶桄希
张颉
《水电能源科学》
北大核心
2021
13
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部