The trivalent ytterbium(Yb^(3+))ion has been extensively used as an emitter in short-wave infrared(SWIR)lasers,a sensitizer to activate other lanthanide ions for up-conversion luminescence,and a spectral converter in ...The trivalent ytterbium(Yb^(3+))ion has been extensively used as an emitter in short-wave infrared(SWIR)lasers,a sensitizer to activate other lanthanide ions for up-conversion luminescence,and a spectral converter in Ln^(3+)-Yb^(3+)doubly doped quantum cutting phosphors.Here we report a new function of the Yb^(3+)ion—as an efficient emitting center for SWIR persistent luminescence.We have developed the first real SWIR persistent phosphor,MgGeO3:Yb^(3+),which exhibits very-long persistent luminescence at around 1000 nm for longer than 100 h.The MgGeO3:Yb^(3+)phosphor is spectrally transparent to visible/near-infrared light(~400–900 nm)and is a promising ultraviolet-to-SWIR spectral convertor.The MgGeO3:Yb^(3+)phosphor also exhibits a photostimulated persistent luminescence capability,where the SWIR persistent emission in an ultraviolet-light pre-irradiated sample can be rejuvenated by low-energy light(white or red light)stimulation.The MgGeO3:Yb^(3+)phosphor is expected to have promising applications in biomedical imaging,night-vision surveillance and photovoltaics.展开更多
A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a...A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.展开更多
The Qulong deposit in Tibet is one of the largest porphyry copper-molybdenum deposits in China. We used short-wave infrared(SWIR) spectroscopy to examine the spectral characteristics of the extensively developed chlor...The Qulong deposit in Tibet is one of the largest porphyry copper-molybdenum deposits in China. We used short-wave infrared(SWIR) spectroscopy to examine the spectral characteristics of the extensively developed chlorite in this deposit. X-ray diffraction and electron microprobe analyses were used for phase identification and to obtain the chemical composition, ion substitution relationships, and formation environment of the chlorite. SWIR spectral parameters were applied to detect the hydrothermal centers. The results indicate that the wavelength of the absorption feature for Qulong chlorite Fe-OH(Pos2250) range from 2240 to 2268.4 nm;the chlorite substitution relationships are dominated by Mg-Fe substitution at the octahedral sites together with Al;-Si substitution at the tetrahedral sites;the chlorite formation temperatures range within the medium-low temperature hydrothermal alteration range from 164 to 281°C, with an average value of 264℃;the wavelength of the chlorite peak position for Fe-OH(2250 nm) absorption and its chemical composition are positively correlated with Al^(Ⅵ), Fe + Al^(Ⅵ), Fe/(Fe + Mg), Fe, and Fe + Al^(Ⅳ)but negatively correlated with Mg and Mg/(Fe + Mg);and the wavelength associated with the chlorite Fe-OH(2250 nm) absorption feature is positively correlated with the temperature at which the chlorite formed. These correlations indicate that more Fe and Al^(Ⅵ) ions and fewer Mg ions at the octahedral sites of chlorite lead to a longer the wavelength of the chlorite Fe-OH(2250 nm) absorption feature and a higher chlorite formation temperature. The wavelength of the Qulong chlorite Fe-OH(2250 nm) absorption feature(>2252 nm) can thus serve as an exploration indicator to guide the detection of hydrothermal centers in porphyry copper deposits. The results of the study indicate that the mineralogical and SWIR spectral characteristics of chlorite are significant indicators for locating hydrothermal centers within porphyry deposits.展开更多
基金support from the National Science Foundation(CAREER DMR-0955908,DMR-1403929)support from the National Natural Science Foundation of China(no.81171463)support from the China Scholarship Council.
文摘The trivalent ytterbium(Yb^(3+))ion has been extensively used as an emitter in short-wave infrared(SWIR)lasers,a sensitizer to activate other lanthanide ions for up-conversion luminescence,and a spectral converter in Ln^(3+)-Yb^(3+)doubly doped quantum cutting phosphors.Here we report a new function of the Yb^(3+)ion—as an efficient emitting center for SWIR persistent luminescence.We have developed the first real SWIR persistent phosphor,MgGeO3:Yb^(3+),which exhibits very-long persistent luminescence at around 1000 nm for longer than 100 h.The MgGeO3:Yb^(3+)phosphor is spectrally transparent to visible/near-infrared light(~400–900 nm)and is a promising ultraviolet-to-SWIR spectral convertor.The MgGeO3:Yb^(3+)phosphor also exhibits a photostimulated persistent luminescence capability,where the SWIR persistent emission in an ultraviolet-light pre-irradiated sample can be rejuvenated by low-energy light(white or red light)stimulation.The MgGeO3:Yb^(3+)phosphor is expected to have promising applications in biomedical imaging,night-vision surveillance and photovoltaics.
文摘A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.
基金funded by Science and Technology Project of Tibet Autonomous Region(Grant Nos.XZ201801-GB-01XZ202102YD0024C)+2 种基金The Second Round of Comprehensive Investigation and Research on the Qinghai-Tibet Plateau(Grant No.2019QZKK0806)National Natural Science Foundation of China(Grant No.42002097)Demonstration Research on Alteration Mapping using Short-wave Infrared and Thermal Infrared Hyperspectral Technologies(Grant No.KK2102)。
文摘The Qulong deposit in Tibet is one of the largest porphyry copper-molybdenum deposits in China. We used short-wave infrared(SWIR) spectroscopy to examine the spectral characteristics of the extensively developed chlorite in this deposit. X-ray diffraction and electron microprobe analyses were used for phase identification and to obtain the chemical composition, ion substitution relationships, and formation environment of the chlorite. SWIR spectral parameters were applied to detect the hydrothermal centers. The results indicate that the wavelength of the absorption feature for Qulong chlorite Fe-OH(Pos2250) range from 2240 to 2268.4 nm;the chlorite substitution relationships are dominated by Mg-Fe substitution at the octahedral sites together with Al;-Si substitution at the tetrahedral sites;the chlorite formation temperatures range within the medium-low temperature hydrothermal alteration range from 164 to 281°C, with an average value of 264℃;the wavelength of the chlorite peak position for Fe-OH(2250 nm) absorption and its chemical composition are positively correlated with Al^(Ⅵ), Fe + Al^(Ⅵ), Fe/(Fe + Mg), Fe, and Fe + Al^(Ⅳ)but negatively correlated with Mg and Mg/(Fe + Mg);and the wavelength associated with the chlorite Fe-OH(2250 nm) absorption feature is positively correlated with the temperature at which the chlorite formed. These correlations indicate that more Fe and Al^(Ⅵ) ions and fewer Mg ions at the octahedral sites of chlorite lead to a longer the wavelength of the chlorite Fe-OH(2250 nm) absorption feature and a higher chlorite formation temperature. The wavelength of the Qulong chlorite Fe-OH(2250 nm) absorption feature(>2252 nm) can thus serve as an exploration indicator to guide the detection of hydrothermal centers in porphyry copper deposits. The results of the study indicate that the mineralogical and SWIR spectral characteristics of chlorite are significant indicators for locating hydrothermal centers within porphyry deposits.