准确的电力负荷预测可以保证电力供应的稳定,降低用电成本,提高供电质量。在进行短期电力负荷预测时,考虑到时序数据的时间相关性,应用张量流深度学习框架构建了LSTM神经网络模型,对电力负荷时序数据进行回归预测。使用某省电力公司电...准确的电力负荷预测可以保证电力供应的稳定,降低用电成本,提高供电质量。在进行短期电力负荷预测时,考虑到时序数据的时间相关性,应用张量流深度学习框架构建了LSTM神经网络模型,对电力负荷时序数据进行回归预测。使用某省电力公司电力负荷数据进行模拟仿真,结果表明基于长短期记忆人工神经网络(Long-Short Term Memory,LSTM)的深度学习模型在短期电力负荷预测中可以有效地预测负荷变化。展开更多
随着电力系统的建立与发展,负荷预测将发挥越来越重要的作用。电力系统负荷预测的结果对电力系统的调度运行和生产有很大影响,准确的负荷预测有助于提高电力系统的安全稳定性。但在进行短期电力负荷预测时,传统模型无法同时兼顾负荷数...随着电力系统的建立与发展,负荷预测将发挥越来越重要的作用。电力系统负荷预测的结果对电力系统的调度运行和生产有很大影响,准确的负荷预测有助于提高电力系统的安全稳定性。但在进行短期电力负荷预测时,传统模型无法同时兼顾负荷数据的时序性和非线性的特点。为此文章提出一种基于长短期记忆神经网络(Long Short Term Memory,LSTM)的电力负荷预测方法,并使用这种方法对某地电力负荷值进行预测,将预测结果与传统模型对比,最终证明LSTM模型的误差更低,预测效果更好。展开更多
短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollinat...短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollination algorithm,FPA)优化变分模态分解(variational mode decomposition,VMD)和双向长短时记忆(bidirectional long and short time memory,BiLSTM)神经网络的新型两阶段短期电力负荷预测方法。第一阶段首先提出了一种关于分解损失的VMD评价标准,并采用FPA来寻找该标准下分解参数的最优组合,从而降低了经验设置参数的随机性并且减少了分解过程中的信号损失,提高了分解质量;其次针对分解所得的每个子序列分别建立具备双向处理和长期记忆的BiLSTM神经网络,从而可以更好地挖掘负荷数据的过去和未来的深度时序特征。第二阶段综合考虑模态分量以及气象和星期类型等短期因素的影响,建立基于BiLSTM神经网络的误差纠正模型,用以挖掘误差中所包含的隐含信息,从而降低了模型的固有误差。将该文方法应用于美国南部某地区的负荷数据集,最终的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(root mean square error,RMSE)以及R2分别为108.03、1.19%、146.48以及0.9812。随后在冀北电网某供电公司的实际应用中,再次证明了该方法在区域性短期电力负荷预测中的有效性。展开更多
随着智能电网、全球能源互联网的建设与相关技术的发展,现代电力系统中电力大数据的格局已经形成,如何对高维海量数据进行深度挖掘以实现数据的充分利用,成为当前电力工作者们关心的问题。该文针对电力大数据环境下高精度和实时性的负...随着智能电网、全球能源互联网的建设与相关技术的发展,现代电力系统中电力大数据的格局已经形成,如何对高维海量数据进行深度挖掘以实现数据的充分利用,成为当前电力工作者们关心的问题。该文针对电力大数据环境下高精度和实时性的负荷预测展开了研究,提出了基于Spark平台和并行随机森林回归算法(Spark platform and parallel random forest regression,SP-RFR)的短期电力负荷预测方法,通过3次弹性分布式数据集(resilient distributed datasets,RDD)转换实现单机随机森林算法的并行化改进,并在Spark分布式集群环境下实现部署。结合某区域实际电力负荷数据设计试验,进行模型训练和回归预测,通过试验证明,对同等的数据集,基于Spark平台的并行随机森林回归算法预测精度高于单机负荷预测算法;并行随机森林算法受离群数据干扰较小,且随着数据集的增大,并行随机森林算法表现出良好的鲁棒性;与单机算法在运行时间上相比,随着数据集的增大,基于分布式集群的方法优势明显。该文提出的方法能够有效地在分布式环境中进行电力负荷预测,为负荷预测提供了一种新思路。展开更多
文摘准确的电力负荷预测可以保证电力供应的稳定,降低用电成本,提高供电质量。在进行短期电力负荷预测时,考虑到时序数据的时间相关性,应用张量流深度学习框架构建了LSTM神经网络模型,对电力负荷时序数据进行回归预测。使用某省电力公司电力负荷数据进行模拟仿真,结果表明基于长短期记忆人工神经网络(Long-Short Term Memory,LSTM)的深度学习模型在短期电力负荷预测中可以有效地预测负荷变化。
文摘随着电力系统的建立与发展,负荷预测将发挥越来越重要的作用。电力系统负荷预测的结果对电力系统的调度运行和生产有很大影响,准确的负荷预测有助于提高电力系统的安全稳定性。但在进行短期电力负荷预测时,传统模型无法同时兼顾负荷数据的时序性和非线性的特点。为此文章提出一种基于长短期记忆神经网络(Long Short Term Memory,LSTM)的电力负荷预测方法,并使用这种方法对某地电力负荷值进行预测,将预测结果与传统模型对比,最终证明LSTM模型的误差更低,预测效果更好。
文摘短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollination algorithm,FPA)优化变分模态分解(variational mode decomposition,VMD)和双向长短时记忆(bidirectional long and short time memory,BiLSTM)神经网络的新型两阶段短期电力负荷预测方法。第一阶段首先提出了一种关于分解损失的VMD评价标准,并采用FPA来寻找该标准下分解参数的最优组合,从而降低了经验设置参数的随机性并且减少了分解过程中的信号损失,提高了分解质量;其次针对分解所得的每个子序列分别建立具备双向处理和长期记忆的BiLSTM神经网络,从而可以更好地挖掘负荷数据的过去和未来的深度时序特征。第二阶段综合考虑模态分量以及气象和星期类型等短期因素的影响,建立基于BiLSTM神经网络的误差纠正模型,用以挖掘误差中所包含的隐含信息,从而降低了模型的固有误差。将该文方法应用于美国南部某地区的负荷数据集,最终的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(root mean square error,RMSE)以及R2分别为108.03、1.19%、146.48以及0.9812。随后在冀北电网某供电公司的实际应用中,再次证明了该方法在区域性短期电力负荷预测中的有效性。
文摘随着智能电网、全球能源互联网的建设与相关技术的发展,现代电力系统中电力大数据的格局已经形成,如何对高维海量数据进行深度挖掘以实现数据的充分利用,成为当前电力工作者们关心的问题。该文针对电力大数据环境下高精度和实时性的负荷预测展开了研究,提出了基于Spark平台和并行随机森林回归算法(Spark platform and parallel random forest regression,SP-RFR)的短期电力负荷预测方法,通过3次弹性分布式数据集(resilient distributed datasets,RDD)转换实现单机随机森林算法的并行化改进,并在Spark分布式集群环境下实现部署。结合某区域实际电力负荷数据设计试验,进行模型训练和回归预测,通过试验证明,对同等的数据集,基于Spark平台的并行随机森林回归算法预测精度高于单机负荷预测算法;并行随机森林算法受离群数据干扰较小,且随着数据集的增大,并行随机森林算法表现出良好的鲁棒性;与单机算法在运行时间上相比,随着数据集的增大,基于分布式集群的方法优势明显。该文提出的方法能够有效地在分布式环境中进行电力负荷预测,为负荷预测提供了一种新思路。