期刊文献+
共找到145篇文章
< 1 2 8 >
每页显示 20 50 100
支持向量机的船舶短期电力负荷预测方法 被引量:6
1
作者 侯文君 汪英英 +1 位作者 姚艺新 黄小华 《舰船科学技术》 北大核心 2018年第9X期79-81,共3页
船舶的短期电力负荷具有强烈的非线性变化特点,传统方法无法描述船舶短期电力负荷的变化趋势,以解决当前船舶短期电力负荷预测误差大的难题,提出了基于支持向量机的船舶短期电力负荷预测方法。首先对船舶短期电力负荷预测的研究现状进... 船舶的短期电力负荷具有强烈的非线性变化特点,传统方法无法描述船舶短期电力负荷的变化趋势,以解决当前船舶短期电力负荷预测误差大的难题,提出了基于支持向量机的船舶短期电力负荷预测方法。首先对船舶短期电力负荷预测的研究现状进行分析,指出引起不足的原因,然后采用支持向量机对船舶短期电力负荷数据进行学习,建立可以反映船舶短期电力负荷变化的预测模型,最后进行了船舶短期电力负荷预测的验证性测试。结果表明,支持向量机可以提高船舶短期电力负荷预测精度,可以对将来船舶短期电力负荷值进行准确估计,具有较高的实际应用价值。 展开更多
关键词 船舶 短期电力负荷 预测误差 变化趋势 验证性测试
下载PDF
基于LSTM与seq2seq模型的短期电力负荷预测方法 被引量:2
2
作者 李建芳 纪鑫 +2 位作者 张海峰 赵晓龙 陈润东 《电子设计工程》 2023年第24期150-153,158,共5页
为了提高短期负荷预测的精度,利用长短期记忆(Long Short-Term Memory,LSTM)与seq2seq(sequence to sequence)模型预测短期电力负荷。根据电力负荷数据的组成结构和产生原理,收集历史负荷数据,通过缺失补全、归一化等步骤,完成初始收集... 为了提高短期负荷预测的精度,利用长短期记忆(Long Short-Term Memory,LSTM)与seq2seq(sequence to sequence)模型预测短期电力负荷。根据电力负荷数据的组成结构和产生原理,收集历史负荷数据,通过缺失补全、归一化等步骤,完成初始收集数据的预处理。构建LSTM与seq2seq模型,利用该模型提取历史电力负荷数据特征,推导出电力负荷数据的变化规律。综合考虑了各因素对电网的影响,得到了电网的短期负荷预测结果。实验结果证明,与传统预测方法相比,在工作日和休息日中,优化设计预测方法的平均误差分别降低了5.64 kW·h和3.53 kW·h,提高了电力负荷预测精度。 展开更多
关键词 LSTM seq2seq模型 短期电力负荷 负荷预测
下载PDF
基于极限学习机的超短期电力负荷度量研究
3
作者 何大可 荣功立 +2 位作者 姚岱州 马浩原 史爽 《电子设计工程》 2024年第4期172-175,180,共5页
针对电力负荷超短期输出数据相似度较高导致输出结果不精准的问题,提出基于极限学习机的超短期电力负荷度量方法。基于极限学习机网络计算电力负荷度量偏差,最大程度消除冗余数据。以负荷影响因素为模型输入,以负荷为模型输出,在相似性... 针对电力负荷超短期输出数据相似度较高导致输出结果不精准的问题,提出基于极限学习机的超短期电力负荷度量方法。基于极限学习机网络计算电力负荷度量偏差,最大程度消除冗余数据。以负荷影响因素为模型输入,以负荷为模型输出,在相似性原则下,读取历史负荷数据。利用激活Sigmoid函数平滑处理样本数据,设置切换准则,设计极限学习机度量过程,完成超短期电力负荷度量。由实验结果可知,该方法 12月21日、12月25日电力负荷的波动范围分别为0~600 kW、0~1 300 kW,与实际数据存在较小的偏差,具有精准度量结果,受数据相似度影响较小。 展开更多
关键词 极限学习机 超短期 电力负荷 负荷度量 SIGMOID函数
下载PDF
改进粒子群算法优化支持向量机的短期负荷预测 被引量:6
4
作者 李杰 靳孟宇 马士豪 《测控技术》 2021年第4期76-79,共4页
针对支持向量回归机在预测建模中的参数选取问题,提出一种基于混沌自适应策略的粒子群优化支持向量回归机参数的方法。采用混沌映射算法和聚合度自适应判断策略,增强种群的全局寻优性能,提升粒子的多样性,从而避免种群过早收敛。充分考... 针对支持向量回归机在预测建模中的参数选取问题,提出一种基于混沌自适应策略的粒子群优化支持向量回归机参数的方法。采用混沌映射算法和聚合度自适应判断策略,增强种群的全局寻优性能,提升粒子的多样性,从而避免种群过早收敛。充分考虑天气、节假日、居民消费等因素的影响,提出一种改进的支持向量回归机预测模型并与粒子群算法的支持向量回归机模型进行对比分析。分析结果表明,该预测模型可将预测的均方根误差降低约40%,绝对值误差降低约42%,相对误差降低约46%,仿真结果验证了所提方法优化了支持向量回归机参数,改善了预测效果。 展开更多
关键词 粒子群优化 支持向量回归 自适应变异 混沌映射 短期电力负荷
下载PDF
短期电力负荷预测的时间序列数据深度挖掘模型设计 被引量:6
5
作者 董亮 阚新生 +2 位作者 邓国如 徐杰 袁慧 《能源与环保》 2021年第6期207-212,共6页
短期电力负荷预测存在数据时间序列紊乱现象,导致预测短期电力负荷精确度低,为此提出用于短期电力负荷预测的时间序列数据深度挖掘模型。设计数据预处理电力数据仓库体系,获取电力数据,并对电力数据进行排序处理;基于数据处理结果,划分... 短期电力负荷预测存在数据时间序列紊乱现象,导致预测短期电力负荷精确度低,为此提出用于短期电力负荷预测的时间序列数据深度挖掘模型。设计数据预处理电力数据仓库体系,获取电力数据,并对电力数据进行排序处理;基于数据处理结果,划分数据时间序列,建立时间序列数据深度挖掘模型,预测短期电力负荷。实验结果显示,采集同一区域的同一电力局电力信息,对短期电力负荷进行预测,预测短期电力负荷功率与实际一致,对短期电力负荷预测的精确度较高。 展开更多
关键词 短期电力负荷 预测 时间序列 数据深度挖掘
下载PDF
基于改进相关向量机算法的短期电力负荷预测方法研究 被引量:5
6
作者 陈锡祥 郑伟民 +2 位作者 张笑弟 田胜鑫 王宇 《水利水电技术(中英文)》 北大核心 2021年第5期215-222,共8页
由于短期电力负荷存在随机性强、影响因素多、预测精度低等问题,在充分考虑气温、日期、节假日等影响因素的基础上,深入研究预测模型,对单一预测模型进行了改进,提出一种将相关向量机与深度置信网络相结合的短期负荷预测方法。通过相关... 由于短期电力负荷存在随机性强、影响因素多、预测精度低等问题,在充分考虑气温、日期、节假日等影响因素的基础上,深入研究预测模型,对单一预测模型进行了改进,提出一种将相关向量机与深度置信网络相结合的短期负荷预测方法。通过相关向量机对电力负荷周期变化的通用模型进行建立,在通过深度置信网络建立其误差补偿模型,使用误差补偿模型补偿通用模型的预测误差,提高电力预测的准确度。通过仿真对模型改进前后的有效性和准确性进行验证。研究结果表明,改进后的方法大大提高了短期负荷预测的准确性,无论是否计及气温,都可以实现高精度的预测。降低了负荷因素中一些随机噪声对电力负荷预测的影响,提高了模型的适用性和可靠性。该研究为我国电力负荷预测的发展提供了参考和借鉴。 展开更多
关键词 短期电力负荷 相关向量机 深度置信网络 负荷预测 误差补偿
下载PDF
深度学习框架下LSTM网络在短期电力负荷预测中的应用 被引量:107
7
作者 陈亮 王震 王刚 《电力信息与通信技术》 2017年第5期8-11,共4页
准确的电力负荷预测可以保证电力供应的稳定,降低用电成本,提高供电质量。在进行短期电力负荷预测时,考虑到时序数据的时间相关性,应用张量流深度学习框架构建了LSTM神经网络模型,对电力负荷时序数据进行回归预测。使用某省电力公司电... 准确的电力负荷预测可以保证电力供应的稳定,降低用电成本,提高供电质量。在进行短期电力负荷预测时,考虑到时序数据的时间相关性,应用张量流深度学习框架构建了LSTM神经网络模型,对电力负荷时序数据进行回归预测。使用某省电力公司电力负荷数据进行模拟仿真,结果表明基于长短期记忆人工神经网络(Long-Short Term Memory,LSTM)的深度学习模型在短期电力负荷预测中可以有效地预测负荷变化。 展开更多
关键词 短期电力负荷预测 长短期记忆神经网络 张量流 深度学习
下载PDF
基于改进ABC和IDPC-MKELM的短期电力负荷预测 被引量:16
8
作者 狄曙光 刘峰 +3 位作者 孙建宇 冀超 董铎亮 蔄靖宇 《智慧电力》 北大核心 2022年第9期74-81,共8页
为提高受外部因素影响敏感的短期电力负荷预测精度,提出了一种基于改进ABC优化密度峰值聚类和多核极限学习机的短期电力负荷预测方法。构建融合特征提取、人工蜂群算法(ABC)、密度峰值聚类(DPC)和核极限学习机(KELM)的短期电力负荷预测... 为提高受外部因素影响敏感的短期电力负荷预测精度,提出了一种基于改进ABC优化密度峰值聚类和多核极限学习机的短期电力负荷预测方法。构建融合特征提取、人工蜂群算法(ABC)、密度峰值聚类(DPC)和核极限学习机(KELM)的短期电力负荷预测模型。针对ABC收敛效率不高的缺陷,设计新型蜜源搜索和蜜蜂进化方式,以提升改进ABC全局寻优能力;针对DPC截断距离与聚类中心人为设定的不足,定义邦费罗尼指数函数和聚类中心截断指标,并将改进的ABC应用于DPC参数优化过程,以实现DPC最佳聚类分析;针对KELM回归能力不强、参数选取难以确定的问题,设计多核加权KELM,并采用改进的ABC进行参数优化,以提高极限学习机预测精度。仿真结果表明,所提短期电力负荷预测方法更具有效性,平均误差低了约8.8%~39.8%。 展开更多
关键词 短期电力负荷预测 人工蜂群算法 密度峰值聚类 核极限学习机 特征提取 预测精度
下载PDF
基于CNN-BiLSTM-Attention的超短期电力负荷预测 被引量:6
9
作者 宋珊珊 潘文林 +1 位作者 王嘉梅 梁志茂 《云南民族大学学报(自然科学版)》 CAS 2022年第2期235-240,共6页
在长短期记忆神经网络(LSTM)的基础上,运用双向的长短期记忆神经网络(BiLSTM),结合卷积神经网络(CNN)提出了一个预测模型,对超短期电力负荷预测.运用合肥市2019年全年数据对该模型进行训练及预测,结果显示,CNN-BiLSTM预测精度高于CNN-L... 在长短期记忆神经网络(LSTM)的基础上,运用双向的长短期记忆神经网络(BiLSTM),结合卷积神经网络(CNN)提出了一个预测模型,对超短期电力负荷预测.运用合肥市2019年全年数据对该模型进行训练及预测,结果显示,CNN-BiLSTM预测精度高于CNN-LSTM预测模型,为进一步提升预测精确度,在BiLSTM神经网络后面连接了一个Attention在输出,发现其预测精度进一步提升了. 展开更多
关键词 超短期电力负荷预测 卷积神经网络(CNN) 双向长短期记忆神经网络(BiLSTM) Attention机制
下载PDF
基于EMD-BiLSTM的短期电力负荷预测研究
10
作者 沈旃葳 吴细秀 +2 位作者 罗格帅 秦理 张清勇 《武汉理工大学学报》 CAS 2024年第2期141-149,共9页
短期电力负荷预测能够评估某地区整体的电力负荷变化情况,对电力系统安全稳定运行至关重要,而气象因素也具有深刻的影响。作者提出一种融合了经验模态分解(EMD)和双向长短期记忆网络(BiLSTM)的模型,首先结合气象因素分析其与电力系统用... 短期电力负荷预测能够评估某地区整体的电力负荷变化情况,对电力系统安全稳定运行至关重要,而气象因素也具有深刻的影响。作者提出一种融合了经验模态分解(EMD)和双向长短期记忆网络(BiLSTM)的模型,首先结合气象因素分析其与电力系统用电量的相关性,选取有相关性的气象因素和历史负荷数据一起作为输入特征集,利用EMD算法将随机性强的历史电力负荷数据分解为有限个特征互异的固有模态函数分量和趋势分量。然后和气象因素一起输入到BiLSTM中深度挖掘历史数据并训练模型。最后对各分量数据分别预测并叠加输出预测值。以某地电力负荷数据为实际算例,算例结果表明,采用该方法预测模型拟合度能达到97%,具有较好的预测效果。相较于LSTM网络和BiLSTM网络的预测结果,其预测曲线更贴近于历史负荷数据,特别是对于电力负荷趋势的突然变化,其预测精度得到有效提升。 展开更多
关键词 短期电力负荷预测 经验模态分解 双向长短期记忆网络 时间序列
原文传递
基于ARMAX模型的电力负荷预测 被引量:2
11
作者 胡海兵 章安元 祁才君 《华东电力》 北大核心 2002年第7期11-13,共3页
在综合考虑电力负荷的特点和影响电力负荷各种因素的基础上 ,采用 ARMAX模型对电力负荷进行预测 ,该模型具有在线修正参数的功能。对兰溪供电局的电力负荷的预测结果表明 ,该模型具有比较高的预测精度。
关键词 ARMAX模型 电力负荷预测 电力系统 电网 建模
原文传递
LSSVM与PSO—LSSVM在短期电力负荷预测中的优劣 被引量:1
12
作者 尹中诚 《青海电力》 2019年第2期53-57,67,共6页
短期电力负荷预测的精度关乎电力企业的经济效益,预测模型决定精度的高低。针对预测模型的适用性和稳定性,采用基于统计学习理论的机器学习LSSVM和PSO—LSSVM算法对广东某一区域电力负荷进行预测。结果显示:工作日、双休日和节假日,PSO... 短期电力负荷预测的精度关乎电力企业的经济效益,预测模型决定精度的高低。针对预测模型的适用性和稳定性,采用基于统计学习理论的机器学习LSSVM和PSO—LSSVM算法对广东某一区域电力负荷进行预测。结果显示:工作日、双休日和节假日,PSO—LSSVM算法预测准确度明显大于LSSVM预测;此外LSSVM和PSO—LSSVM算法对工作日和双休日24小时每时刻的预测误差约在2%左右。因此,选择预测模型时,一方面要考虑不同地区各种影响因素,另一方面要根据样本量大小,选择合适、有效的模型,从而提高预测准确度。 展开更多
关键词 短期电力负荷预测 预测模型 机器学习 准确度
下载PDF
基于深度学习LSTM网络的短期电力负荷预测方法 被引量:106
13
作者 陈卓 孙龙祥 《电子技术(上海)》 2018年第1期39-41,共3页
随着电力系统的建立与发展,负荷预测将发挥越来越重要的作用。电力系统负荷预测的结果对电力系统的调度运行和生产有很大影响,准确的负荷预测有助于提高电力系统的安全稳定性。但在进行短期电力负荷预测时,传统模型无法同时兼顾负荷数... 随着电力系统的建立与发展,负荷预测将发挥越来越重要的作用。电力系统负荷预测的结果对电力系统的调度运行和生产有很大影响,准确的负荷预测有助于提高电力系统的安全稳定性。但在进行短期电力负荷预测时,传统模型无法同时兼顾负荷数据的时序性和非线性的特点。为此文章提出一种基于长短期记忆神经网络(Long Short Term Memory,LSTM)的电力负荷预测方法,并使用这种方法对某地电力负荷值进行预测,将预测结果与传统模型对比,最终证明LSTM模型的误差更低,预测效果更好。 展开更多
关键词 短期电力负荷预测 长短期记忆神经网络 传统模型
原文传递
基于随机森林算法的短期电力负荷预测 被引量:99
14
作者 李焱 贾雅君 +2 位作者 李磊 郝建姝 张晓英 《电力系统保护与控制》 EI CSCD 北大核心 2020年第21期117-124,共8页
为了准确预测电力系统的短期负荷变化,为电力系统安全、经济、高效运行提供指导方向,提出了一种将模糊聚类以及随机森林回归算法进行组合的电力系统负荷预测方法,利用粗糙集构建补偿规则,对预测结果进行修正补偿。首先,通过对电力系统... 为了准确预测电力系统的短期负荷变化,为电力系统安全、经济、高效运行提供指导方向,提出了一种将模糊聚类以及随机森林回归算法进行组合的电力系统负荷预测方法,利用粗糙集构建补偿规则,对预测结果进行修正补偿。首先,通过对电力系统负荷的周期性、天气相关性等特征进行分析,利用C均值模糊聚类算法对历史样本进行聚类,在进行随机森林回归预测时,使用聚类后同类数据作为训练集样本构建决策树。考虑到随机森林回归预测偏保守、电力系统负荷在峰值处波动大的特征,在得到预测结果后利用粗糙集理论生成补偿规则,对负荷预测进行修正。利用所述方法对北爱尔兰地区进行一日24 h的负荷预测,结果跟实际负荷的平均绝对误差百分比为2.09%,验证了该预测方法的有效性。 展开更多
关键词 短期电力负荷预测 随机森林算法 C均值聚类 粗糙集理论
下载PDF
基于CNN-Bi LSTM的短期电力负荷预测 被引量:73
15
作者 朱凌建 荀子涵 +3 位作者 王裕鑫 崔强 陈文义 娄俊超 《电网技术》 EI CSCD 北大核心 2021年第11期4532-4539,共8页
短期电力负荷预测能准确评估地区整体电力负荷变化情况,为电力系统运行决策提供准确参考。电力负荷参数受多维因素影响,为充分挖掘电力负荷数据中的时序特征,提升电力负荷预测精度,该文提出一种基于特征筛选的卷积神经网络—双向长短期... 短期电力负荷预测能准确评估地区整体电力负荷变化情况,为电力系统运行决策提供准确参考。电力负荷参数受多维因素影响,为充分挖掘电力负荷数据中的时序特征,提升电力负荷预测精度,该文提出一种基于特征筛选的卷积神经网络—双向长短期记忆网络组合模型的短期电力负荷预测方法。以真实电力负荷数据作为数据集,通过对多维输入参数的优化筛选,选取高相关性特征向量作为输入,构建预测模型。通过与添加注意力机制的组合模型对比验证了输入参数优化分析的可行性和优越性。最后利用实际算例将该方法与利用自动化模型构建工具构建的梯度增强基线模型及常用预测模型相比,该方法构建的组合模型可以提升多维电力负荷数据的短期预测精度。 展开更多
关键词 短期电力负荷预测 卷积神经网络 双向长短时记忆神经网络 特征筛选 梯度增强基线模型
下载PDF
基于EMD和长短期记忆网络的短期电力负荷预测研究 被引量:49
16
作者 魏骜 茅大钧 +1 位作者 韩万里 吕彬 《热能动力工程》 CAS CSCD 北大核心 2020年第4期203-209,共7页
针对电力负荷非线性、非平稳性、时序性等特点,提出了一种基于EMD-LN-LSTM的短期电力负荷预测模型。利用经验模态分解(EMD)将经数据预处理之后的原始电力负荷数据分解为有限个内涵模态分量(IMF)和一个残差分量,以降低负荷序列的非平稳... 针对电力负荷非线性、非平稳性、时序性等特点,提出了一种基于EMD-LN-LSTM的短期电力负荷预测模型。利用经验模态分解(EMD)将经数据预处理之后的原始电力负荷数据分解为有限个内涵模态分量(IMF)和一个残差分量,以降低负荷序列的非平稳性和复杂度。将分解后的各分量分别输入到长短期记忆网络(LSTM)中进行预测,同时利用层标准化(LN)对LSTM进行规范化处理,优化网络模型。对各分量预测值进行重组,求出最终的负荷预测结果。以多伦多真实数据为算例,分别使用EMD-LN-LSTM模型和其他模型进行预测,结果表明:EMD-LN-LSTM模型24 h平均绝对百分比误差相较于RNN模型、LSTM模型分别降低了3.600%、1.864%,而拟合优度均高于RNN模型、LSTM模型,表明该模型能够更好地拟合负荷曲线,具有较高的预测精度。 展开更多
关键词 短期电力负荷预测 经验模态分解 长短期记忆网络 模型优化 组合预测
原文传递
基于改进PSO优化LSTM网络的短期电力负荷预测 被引量:41
17
作者 魏腾飞 潘庭龙 《系统仿真学报》 CAS CSCD 北大核心 2021年第8期1866-1874,共9页
为了提高短期电力负荷预测的精度,提出一种基于自适应柯西变异粒子群(ACMPSO)算法优化长短期记忆(LSTM)神经网络的短期电力负荷预测模型(ACMPSO-LSTM)。针对LSTM模型参数较难选取的问题,采用ACMPSO算法进行LSTM模型参数寻优,利用非线性... 为了提高短期电力负荷预测的精度,提出一种基于自适应柯西变异粒子群(ACMPSO)算法优化长短期记忆(LSTM)神经网络的短期电力负荷预测模型(ACMPSO-LSTM)。针对LSTM模型参数较难选取的问题,采用ACMPSO算法进行LSTM模型参数寻优,利用非线性变化惯性权重来提高PSO算法的全局寻优能力和收敛速度,并在寻优过程中添加了基于遗传算法中的变异操作,减小粒子陷入局部最优解的风险。仿真结果表明,ACMPSO优化LSTM的方法能够有效提高短期电力负荷预测的精度和稳定性。 展开更多
关键词 短期电力负荷预测 粒子群算法 长短期记忆神经网络 惯性权重 变异操作
下载PDF
基于FPA-VMD和BiLSTM神经网络的新型两阶段短期电力负荷预测 被引量:39
18
作者 张淑清 李君 +3 位作者 姜安琦 黄娇 刘海涛 艾洪克 《电网技术》 EI CSCD 北大核心 2022年第8期3269-3279,共11页
短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollinat... 短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollination algorithm,FPA)优化变分模态分解(variational mode decomposition,VMD)和双向长短时记忆(bidirectional long and short time memory,BiLSTM)神经网络的新型两阶段短期电力负荷预测方法。第一阶段首先提出了一种关于分解损失的VMD评价标准,并采用FPA来寻找该标准下分解参数的最优组合,从而降低了经验设置参数的随机性并且减少了分解过程中的信号损失,提高了分解质量;其次针对分解所得的每个子序列分别建立具备双向处理和长期记忆的BiLSTM神经网络,从而可以更好地挖掘负荷数据的过去和未来的深度时序特征。第二阶段综合考虑模态分量以及气象和星期类型等短期因素的影响,建立基于BiLSTM神经网络的误差纠正模型,用以挖掘误差中所包含的隐含信息,从而降低了模型的固有误差。将该文方法应用于美国南部某地区的负荷数据集,最终的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(root mean square error,RMSE)以及R2分别为108.03、1.19%、146.48以及0.9812。随后在冀北电网某供电公司的实际应用中,再次证明了该方法在区域性短期电力负荷预测中的有效性。 展开更多
关键词 短期电力负荷预测 变分模态分解 花授粉算法 双向长短时记忆神经网络 误差纠正
下载PDF
基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法 被引量:37
19
作者 龚飘怡 罗云峰 +1 位作者 方哲梅 窦帆 《计算机应用》 CSCD 北大核心 2021年第S01期81-86,共6页
短期电力负荷预测是电力系统中的重要问题之一,准确的预测结果可以提高电力市场的灵活性和资源利用效率,对电力系统高效运行具有重要意义。为了提高预测精度,针对电网负荷数据的时序性特征,提出一种基于Attention-BiLSTM-LSTM神经网络... 短期电力负荷预测是电力系统中的重要问题之一,准确的预测结果可以提高电力市场的灵活性和资源利用效率,对电力系统高效运行具有重要意义。为了提高预测精度,针对电网负荷数据的时序性特征,提出一种基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法。该方法首先针对电力负荷的影响因素(温度、节假日等)提取特征,并使用双向长短期记忆(BiLSTM)神经网络层进行双向时序的特征学习;将双向时序特征作为长短期记忆(LSTM)神经网络层的输入,用LSTM神经网络建模学习时序数据的内部变化规律;使用attention机制计算LSTM隐层状态的不同权重,以对隐层状态进行选择性地关注;结合注意力权重和LSTM神经网络进行负荷预测,最后使用全连接层输出负荷预测结果。使用EUNIT电力负荷数据集进行实验,采用提前单点预测模式,该方法的平均绝对百分比误差(MAPE)达到1.66%,均方根误差(RMSE)达到814.85。通过与单LSTM网络、基于attention机制的LSTM网络(Attention-LSTM)、前馈神经网络(FFNN)、卷积神经网络联合长短期记忆神经网络(CNN-LSTM)等4种典型的负荷预测模型结果对比,验证了Attention-BiLSTM-LSTM神经网络方法更加准确有效。 展开更多
关键词 短期负荷预测 长短期记忆神经网络 注意力机制 循环神经网络 双向长短期记忆神经网络
下载PDF
基于Spark平台和并行随机森林回归算法的短期电力负荷预测 被引量:30
20
作者 刘琪琛 雷景生 +3 位作者 郝珈玮 黄燕刚 李强 罗海波 《电力建设》 北大核心 2017年第10期84-92,共9页
随着智能电网、全球能源互联网的建设与相关技术的发展,现代电力系统中电力大数据的格局已经形成,如何对高维海量数据进行深度挖掘以实现数据的充分利用,成为当前电力工作者们关心的问题。该文针对电力大数据环境下高精度和实时性的负... 随着智能电网、全球能源互联网的建设与相关技术的发展,现代电力系统中电力大数据的格局已经形成,如何对高维海量数据进行深度挖掘以实现数据的充分利用,成为当前电力工作者们关心的问题。该文针对电力大数据环境下高精度和实时性的负荷预测展开了研究,提出了基于Spark平台和并行随机森林回归算法(Spark platform and parallel random forest regression,SP-RFR)的短期电力负荷预测方法,通过3次弹性分布式数据集(resilient distributed datasets,RDD)转换实现单机随机森林算法的并行化改进,并在Spark分布式集群环境下实现部署。结合某区域实际电力负荷数据设计试验,进行模型训练和回归预测,通过试验证明,对同等的数据集,基于Spark平台的并行随机森林回归算法预测精度高于单机负荷预测算法;并行随机森林算法受离群数据干扰较小,且随着数据集的增大,并行随机森林算法表现出良好的鲁棒性;与单机算法在运行时间上相比,随着数据集的增大,基于分布式集群的方法优势明显。该文提出的方法能够有效地在分布式环境中进行电力负荷预测,为负荷预测提供了一种新思路。 展开更多
关键词 电力大数据 分布式计算 并行随机森林回归算法 Spark平台 短期电力负荷预测
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部