期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多文档短摘要生成技术研究 被引量:2
1
作者 张随远 薛源海 +2 位作者 俞晓明 刘悦 程学旗 《广西师范大学学报(自然科学版)》 CAS 北大核心 2019年第2期60-74,共15页
自动摘要技术用于将较长篇幅的文章压缩为一段较短的能概括原文中心内容的文本。多文档冗余度高,电子设备所展示的空间有限,成为摘要发展面临的挑战。本文提出融合图卷积特征的句子粗粒度排序方法。首先将句子之间的相似度矩阵视为拓扑... 自动摘要技术用于将较长篇幅的文章压缩为一段较短的能概括原文中心内容的文本。多文档冗余度高,电子设备所展示的空间有限,成为摘要发展面临的挑战。本文提出融合图卷积特征的句子粗粒度排序方法。首先将句子之间的相似度矩阵视为拓扑关系图,对其进行图卷积计算得到图卷积特征。然后通过排序模型融合图卷积特征以及主流的抽取式多文档摘要技术对句子进行重要度排序,选取排名前四的句子作为摘要。最后提出基于Seq2seq框架的短摘要生成模型:①在Encoder部分采用基于卷积神经网络(CNN)的方法;②引入基于注意力的指针机制,并将主题向量融入其中。实验结果表明,在本文场景下,相较于循环神经网络(RNN),在Encoder部分基于CNN能够更好地进行并行化,在效果基本一致的前提下,显著提升效率。此外,相较于传统的基于抽取和压缩的模型,本文提出的模型在ROUGE指标以及可读性(信息度和流利度)方面均取得了显著的效果提升。 展开更多
关键词 多文档 短摘要生成 Seq2seq
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部