期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多文档短摘要生成技术研究
被引量:
2
1
作者
张随远
薛源海
+2 位作者
俞晓明
刘悦
程学旗
《广西师范大学学报(自然科学版)》
CAS
北大核心
2019年第2期60-74,共15页
自动摘要技术用于将较长篇幅的文章压缩为一段较短的能概括原文中心内容的文本。多文档冗余度高,电子设备所展示的空间有限,成为摘要发展面临的挑战。本文提出融合图卷积特征的句子粗粒度排序方法。首先将句子之间的相似度矩阵视为拓扑...
自动摘要技术用于将较长篇幅的文章压缩为一段较短的能概括原文中心内容的文本。多文档冗余度高,电子设备所展示的空间有限,成为摘要发展面临的挑战。本文提出融合图卷积特征的句子粗粒度排序方法。首先将句子之间的相似度矩阵视为拓扑关系图,对其进行图卷积计算得到图卷积特征。然后通过排序模型融合图卷积特征以及主流的抽取式多文档摘要技术对句子进行重要度排序,选取排名前四的句子作为摘要。最后提出基于Seq2seq框架的短摘要生成模型:①在Encoder部分采用基于卷积神经网络(CNN)的方法;②引入基于注意力的指针机制,并将主题向量融入其中。实验结果表明,在本文场景下,相较于循环神经网络(RNN),在Encoder部分基于CNN能够更好地进行并行化,在效果基本一致的前提下,显著提升效率。此外,相较于传统的基于抽取和压缩的模型,本文提出的模型在ROUGE指标以及可读性(信息度和流利度)方面均取得了显著的效果提升。
展开更多
关键词
多文档
短摘要生成
Seq2seq
下载PDF
职称材料
题名
多文档短摘要生成技术研究
被引量:
2
1
作者
张随远
薛源海
俞晓明
刘悦
程学旗
机构
中国科学院网络数据科学与技术重点实验室
中国科学院计算技术研究所
中国科学院大学
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2019年第2期60-74,共15页
基金
国家重点研发计划(2017YFB0803302)
文摘
自动摘要技术用于将较长篇幅的文章压缩为一段较短的能概括原文中心内容的文本。多文档冗余度高,电子设备所展示的空间有限,成为摘要发展面临的挑战。本文提出融合图卷积特征的句子粗粒度排序方法。首先将句子之间的相似度矩阵视为拓扑关系图,对其进行图卷积计算得到图卷积特征。然后通过排序模型融合图卷积特征以及主流的抽取式多文档摘要技术对句子进行重要度排序,选取排名前四的句子作为摘要。最后提出基于Seq2seq框架的短摘要生成模型:①在Encoder部分采用基于卷积神经网络(CNN)的方法;②引入基于注意力的指针机制,并将主题向量融入其中。实验结果表明,在本文场景下,相较于循环神经网络(RNN),在Encoder部分基于CNN能够更好地进行并行化,在效果基本一致的前提下,显著提升效率。此外,相较于传统的基于抽取和压缩的模型,本文提出的模型在ROUGE指标以及可读性(信息度和流利度)方面均取得了显著的效果提升。
关键词
多文档
短摘要生成
Seq2seq
Keywords
multi-document
short
summary
generation
Seq2seq
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多文档短摘要生成技术研究
张随远
薛源海
俞晓明
刘悦
程学旗
《广西师范大学学报(自然科学版)》
CAS
北大核心
2019
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部