The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on trad...The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on traditional hierarchical architecture and the top down approach and depend structurally on their specific configuration and job scheduling. Not only can they hardly satisfactorily adapt to these increasing changes and disturbances, but also make the redevelopment and maintenance of shop floor control system (SFCS) to need high cost and much time. And SFCS based on the heterarchical architecture don′t provide a predictable and high performance system, especially not in the heterogeneous environments, where the resources are scarce and the current decisions have serious repercussions on the future performances. For this reason, the heterarchical control is hardly applied in industry. Obviously, it is necessary to develop a new structural framework of reconfigurable SFCS to improve their agility, flexibility and maintainability. This paper presents a holonic framework of reconfigurable SFCS based on holonic manufacturing concepts. The framework is composed of resource holons, product holons and other staff holons. The model of each holon and the co operative mechanisms of holons are described. To verify the proposed approach experimentally, a prototype reconfigurable SFCS for a flexible manufacturing shop floor producing discrete parts is implemented.展开更多
In recent years,as a promising way to realize digital transformation,digital twin shop-floor(DTS)plays an impor-tant role in smart manufacturing.The core feature of DTS is the synchronization.How to implement and main...In recent years,as a promising way to realize digital transformation,digital twin shop-floor(DTS)plays an impor-tant role in smart manufacturing.The core feature of DTS is the synchronization.How to implement and maintain the synchronization is critical for DTS.However,there is still a lack of a common definition for synchronization in DTS.Besides,a systematic synchronization mechanism for DTS is strongly needed.This paper first summarizes the defi-nition and requirements of synchronization in DTS,to clarify the understanding of synchronization in DTS.Then,a 5M synchronization mechanism for DTS is proposed,where 5M refers to multi-system data,multi-fidelity model,multi-resource state,multi-level state,and multi-stage operation.As a bottom-up synchronization mechanism,5M synchronization mechanism for DTS has the potential to support DTS to achieve and maintain physical-virtual state synchronization,and to realize operation synchronization of DTS.The implementation methods of 5M synchronization mechanism for DTS are also introduced.Finally,the proposed synchronization mechanism is validated in a digital twin satellite assembly shop-floor,which proves the effectiveness and feasibility of the mechanism.展开更多
Background:Intelligent monitoring of human action in production is an important step to help standardize production processes and construct a digital twin shop-floor rapidly.Human action has a significant impact on th...Background:Intelligent monitoring of human action in production is an important step to help standardize production processes and construct a digital twin shop-floor rapidly.Human action has a significant impact on the production safety and efficiency of a shop-floor,however,because of the high individual initiative of humans,it is difficult to realize real-time action detection in a digital twin shop-floor.Methods:We proposed a real-time detection approach for shop-floor production action.This approach used the sequence data of continuous human skeleton joints sequences as the input.We then reconstructed the Joint Classification-Regression Recurrent Neural Networks(JCR-RNN)based on Temporal Convolution Network(TCN)and Graph Convolution Network(GCN).We called this approach the Temporal Action Detection Net(TAD-Net),which realized real-time shop-floor production action detection.Results:The results of the verification experiment showed that our approach has achieved a high temporal positioning score,recognition speed,and accuracy when applied to the existing Online Action Detection(OAD)dataset and the Nanjing University of Science and Technology 3 Dimensions(NJUST3D)dataset.TAD-Net can meet the actual needs of the digital twin shop-floor.Conclusions:Our method has higher recognition accuracy,temporal positioning accuracy,and faster running speed than other mainstream network models,it can better meet actual application requirements,and has important research value and practical significance for standardizing shop-floor production processes,reducing production security risks,and contributing to the understanding of real-time production action.展开更多
The digital twin shop-floor has received much attention from the manufacturing industry as it is an important way to upgrade the shop-floor digitally and intelligently.As a key part of the shop-floor,humans'high a...The digital twin shop-floor has received much attention from the manufacturing industry as it is an important way to upgrade the shop-floor digitally and intelligently.As a key part of the shop-floor,humans'high autonomy and uncertainty leads to the difficulty in digital twin modeling of human behavior.Therefore,the modeling system for cross-scale human behavior in digital twin shop-floors was developed,powered by the data fusion of macro-behavior and micro-behavior virtual models.Shop-floor human macro-behavior mainly refers to the role of the human and their real-time position.Shop-floor micro-behavior mainly refers to real-time human limb posture and production behavior at their workstation.In this study,we reviewed and summarized a set of theoretical systems for cross-scale human behavior modeling in digital twin shop-floors.Based on this theoretical system,we then reviewed modeling theory and technology from macro-behavior and micro-behavior aspects to analyze the research status of shop-floor human behavior modeling.Lastly,we discuss and offer opinion on the application of cross-scale human behavior modeling in digital twin shop-floors.Cross-scale human behavior modeling is the key for realizing closed-loop interactive drive of human behavior in digital twin shop-floors.展开更多
Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization...Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization of use of production resources. However, it is necessary to measure the productivity, so that the system of measurement and control of manufacturing processes are an element critical as to ensure greater visibility of the flow's restrictions, minimized when detected properly. In this case, the automation of factory's measurement process can effectively contribute to ensuring the effectiveness of the function control of a manufacturing system. It is important to consider that the automation of the system of measurement and control of manufacturing processes, of complex environment, is heavily dependent of IT tools applied directly in the interface computational between the operation systems and the corporate systems. This heavy reliance, if exploited technically properly, allows that automation of the system of measurement and control of production makes the access to time real of availability of manufacturing process's data, such as processing time and setup time that it can export to a specialist software in programming production, for example, feasible. In this paper, the automation of the system of measurement and control of production is approached, in order to identify the main possibilities of the design of an information system capable to integrate the flow of information in an environment internal on manufacturing organizations, with emphasis in the digital manufacturing paradigm.展开更多
Ubiquitous augmented reality(UAR)implementation can benefit smart shop floor operations significantly.UAR from a user's first-person view can support and provide the user with suitable and comprehensive informatio...Ubiquitous augmented reality(UAR)implementation can benefit smart shop floor operations significantly.UAR from a user's first-person view can support and provide the user with suitable and comprehensive information without him/her being distracted from ongoing tasks.A natural hand-based interaction interface,namely,a mobile bare-hand interface(MBHI),is proposed to assist a user in exploring and navigating a large amount of information for a task in the user's first-person view.The integration of a smart shop floor and UAR-based MBHI is particularly challenging.A real shop floor environment is composed of challenging conditions for the implementation of UAR,e.g.,messy backgrounds and significant changes in illumination conditions.Meanwhile,the MBHI is required to provide precise and quick responses to minimize the dificulty of a user's task.In this study,a wearable UAR system integrated with an MBH is proposed to augment the shop floor environment with smart information.A case study is implemented to demonstrate the practicality and effectiveness of the proposed UAR and MBHI system.展开更多
Based on the discussion of functions, components, control structure and network computing architecture of generic shop floor control (GSFC) in computer integrated manufacturing system (CIMS), the internal integrati...Based on the discussion of functions, components, control structure and network computing architecture of generic shop floor control (GSFC) in computer integrated manufacturing system (CIMS), the internal integration between components of GSFC and the external integration between GSFC and the other components of CIMS are studied. The integration models on the aspects of function, information, processing and interface are put forward. The integration models and the methods are implemented and applied in CIMS projects successfully.展开更多
Due to the complex,uncertainty and dynamics in the modern manufacturing environment,a flexible and robust shop floor scheduler is essential to achieve the production goals.A design framework of a shop floor dynamical ...Due to the complex,uncertainty and dynamics in the modern manufacturing environment,a flexible and robust shop floor scheduler is essential to achieve the production goals.A design framework of a shop floor dynamical scheduler is presented in this paper.The workflow and function modules of the scheduler are discussed in detail.A multi-step adaptive scheduling strategy and a process specification language,which is an ontology-based representation of process plan,are utilized in the proposed scheduler.The scheduler acquires the dispatching rule from the knowledge base and uses the build-in on-line simulator to evaluate the obtained rule.These technologies enable the scheduler to improve its fine-tune ability and effectively transfer process information into other heterogeneous information systems in a shop floor.The effectiveness of the suggested structure will be demonstrated via its application in the scheduling system of a manufacturing enterprise.展开更多
文摘The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on traditional hierarchical architecture and the top down approach and depend structurally on their specific configuration and job scheduling. Not only can they hardly satisfactorily adapt to these increasing changes and disturbances, but also make the redevelopment and maintenance of shop floor control system (SFCS) to need high cost and much time. And SFCS based on the heterarchical architecture don′t provide a predictable and high performance system, especially not in the heterogeneous environments, where the resources are scarce and the current decisions have serious repercussions on the future performances. For this reason, the heterarchical control is hardly applied in industry. Obviously, it is necessary to develop a new structural framework of reconfigurable SFCS to improve their agility, flexibility and maintainability. This paper presents a holonic framework of reconfigurable SFCS based on holonic manufacturing concepts. The framework is composed of resource holons, product holons and other staff holons. The model of each holon and the co operative mechanisms of holons are described. To verify the proposed approach experimentally, a prototype reconfigurable SFCS for a flexible manufacturing shop floor producing discrete parts is implemented.
基金Supported by National Natural Science Foundation of China(NSFC)(Grant Nos.52120105008,52005026,52005025).
文摘In recent years,as a promising way to realize digital transformation,digital twin shop-floor(DTS)plays an impor-tant role in smart manufacturing.The core feature of DTS is the synchronization.How to implement and maintain the synchronization is critical for DTS.However,there is still a lack of a common definition for synchronization in DTS.Besides,a systematic synchronization mechanism for DTS is strongly needed.This paper first summarizes the defi-nition and requirements of synchronization in DTS,to clarify the understanding of synchronization in DTS.Then,a 5M synchronization mechanism for DTS is proposed,where 5M refers to multi-system data,multi-fidelity model,multi-resource state,multi-level state,and multi-stage operation.As a bottom-up synchronization mechanism,5M synchronization mechanism for DTS has the potential to support DTS to achieve and maintain physical-virtual state synchronization,and to realize operation synchronization of DTS.The implementation methods of 5M synchronization mechanism for DTS are also introduced.Finally,the proposed synchronization mechanism is validated in a digital twin satellite assembly shop-floor,which proves the effectiveness and feasibility of the mechanism.
基金This work was supported by the National Key Research and Development Program,China(2020YFB1708400)the National Defense Fundamental Research Program,China(JCKY2020210B006,JCKY2017204B053)awarded to TL.
文摘Background:Intelligent monitoring of human action in production is an important step to help standardize production processes and construct a digital twin shop-floor rapidly.Human action has a significant impact on the production safety and efficiency of a shop-floor,however,because of the high individual initiative of humans,it is difficult to realize real-time action detection in a digital twin shop-floor.Methods:We proposed a real-time detection approach for shop-floor production action.This approach used the sequence data of continuous human skeleton joints sequences as the input.We then reconstructed the Joint Classification-Regression Recurrent Neural Networks(JCR-RNN)based on Temporal Convolution Network(TCN)and Graph Convolution Network(GCN).We called this approach the Temporal Action Detection Net(TAD-Net),which realized real-time shop-floor production action detection.Results:The results of the verification experiment showed that our approach has achieved a high temporal positioning score,recognition speed,and accuracy when applied to the existing Online Action Detection(OAD)dataset and the Nanjing University of Science and Technology 3 Dimensions(NJUST3D)dataset.TAD-Net can meet the actual needs of the digital twin shop-floor.Conclusions:Our method has higher recognition accuracy,temporal positioning accuracy,and faster running speed than other mainstream network models,it can better meet actual application requirements,and has important research value and practical significance for standardizing shop-floor production processes,reducing production security risks,and contributing to the understanding of real-time production action.
基金This work was supported by the National Key Research and Development Program,China[2020YFB1708400]the National Defense Fundamental Research Program,China[JCKY2020210B006,JCKY2017204B053].
文摘The digital twin shop-floor has received much attention from the manufacturing industry as it is an important way to upgrade the shop-floor digitally and intelligently.As a key part of the shop-floor,humans'high autonomy and uncertainty leads to the difficulty in digital twin modeling of human behavior.Therefore,the modeling system for cross-scale human behavior in digital twin shop-floors was developed,powered by the data fusion of macro-behavior and micro-behavior virtual models.Shop-floor human macro-behavior mainly refers to the role of the human and their real-time position.Shop-floor micro-behavior mainly refers to real-time human limb posture and production behavior at their workstation.In this study,we reviewed and summarized a set of theoretical systems for cross-scale human behavior modeling in digital twin shop-floors.Based on this theoretical system,we then reviewed modeling theory and technology from macro-behavior and micro-behavior aspects to analyze the research status of shop-floor human behavior modeling.Lastly,we discuss and offer opinion on the application of cross-scale human behavior modeling in digital twin shop-floors.Cross-scale human behavior modeling is the key for realizing closed-loop interactive drive of human behavior in digital twin shop-floors.
文摘Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization of use of production resources. However, it is necessary to measure the productivity, so that the system of measurement and control of manufacturing processes are an element critical as to ensure greater visibility of the flow's restrictions, minimized when detected properly. In this case, the automation of factory's measurement process can effectively contribute to ensuring the effectiveness of the function control of a manufacturing system. It is important to consider that the automation of the system of measurement and control of manufacturing processes, of complex environment, is heavily dependent of IT tools applied directly in the interface computational between the operation systems and the corporate systems. This heavy reliance, if exploited technically properly, allows that automation of the system of measurement and control of production makes the access to time real of availability of manufacturing process's data, such as processing time and setup time that it can export to a specialist software in programming production, for example, feasible. In this paper, the automation of the system of measurement and control of production is approached, in order to identify the main possibilities of the design of an information system capable to integrate the flow of information in an environment internal on manufacturing organizations, with emphasis in the digital manufacturing paradigm.
基金supported by the Singapore A*STAR Agency for Science,Technology and Research Public Sector Research Funding Programme(Grant No.1521200081).
文摘Ubiquitous augmented reality(UAR)implementation can benefit smart shop floor operations significantly.UAR from a user's first-person view can support and provide the user with suitable and comprehensive information without him/her being distracted from ongoing tasks.A natural hand-based interaction interface,namely,a mobile bare-hand interface(MBHI),is proposed to assist a user in exploring and navigating a large amount of information for a task in the user's first-person view.The integration of a smart shop floor and UAR-based MBHI is particularly challenging.A real shop floor environment is composed of challenging conditions for the implementation of UAR,e.g.,messy backgrounds and significant changes in illumination conditions.Meanwhile,the MBHI is required to provide precise and quick responses to minimize the dificulty of a user's task.In this study,a wearable UAR system integrated with an MBH is proposed to augment the shop floor environment with smart information.A case study is implemented to demonstrate the practicality and effectiveness of the proposed UAR and MBHI system.
文摘Based on the discussion of functions, components, control structure and network computing architecture of generic shop floor control (GSFC) in computer integrated manufacturing system (CIMS), the internal integration between components of GSFC and the external integration between GSFC and the other components of CIMS are studied. The integration models on the aspects of function, information, processing and interface are put forward. The integration models and the methods are implemented and applied in CIMS projects successfully.
基金National Defense Fund(No.20030119)NSFC(No.60775060)the Foundation Research Fund of Harbin Engineering University(No.HEUFT07027)
文摘Due to the complex,uncertainty and dynamics in the modern manufacturing environment,a flexible and robust shop floor scheduler is essential to achieve the production goals.A design framework of a shop floor dynamical scheduler is presented in this paper.The workflow and function modules of the scheduler are discussed in detail.A multi-step adaptive scheduling strategy and a process specification language,which is an ontology-based representation of process plan,are utilized in the proposed scheduler.The scheduler acquires the dispatching rule from the knowledge base and uses the build-in on-line simulator to evaluate the obtained rule.These technologies enable the scheduler to improve its fine-tune ability and effectively transfer process information into other heterogeneous information systems in a shop floor.The effectiveness of the suggested structure will be demonstrated via its application in the scheduling system of a manufacturing enterprise.