以夏玉米为材料,设4个灌水水平:337.5、6751、012.5、1 350 m3/hm2;4个施氮水平:75、150、225、300 kg N/hm2,研究限量灌溉和施氮对夏玉米苗期生长及生理指标的影响。结果表明:严重干旱会抑制玉米的生长。在玉米苗期,充分供水和高氮对...以夏玉米为材料,设4个灌水水平:337.5、6751、012.5、1 350 m3/hm2;4个施氮水平:75、150、225、300 kg N/hm2,研究限量灌溉和施氮对夏玉米苗期生长及生理指标的影响。结果表明:严重干旱会抑制玉米的生长。在玉米苗期,充分供水和高氮对玉米的生长不利,轻度亏缺与中氮组合使玉米苗期处于最佳生长状态,水氮共同作用对玉米的光合速率有促进作用;玉米苗期适度经受水分亏缺,有利于根系的生长;在同一施氮水平下,不同程度水分亏缺处理的根冠比(R/S)大于充分供水的处理。玉米苗期叶水势随灌水量的增大而增大,在灌水量相同时,叶水势随施氮量的增加而逐渐变大;干旱会使玉米光合速率下降,但适量增施氮肥可增加玉米的光合速率。展开更多
This paper focused on the water relations of two halophytes differing in photosynthetic pathway, phe- notype, and life cycle: Karelinia caspica (Pall.) Less. (C3, deep-rooted perennial Asteraceae grass) and Atrip...This paper focused on the water relations of two halophytes differing in photosynthetic pathway, phe- notype, and life cycle: Karelinia caspica (Pall.) Less. (C3, deep-rooted perennial Asteraceae grass) and Atriplex tatarica L. (C4, shallow-rooted annual Chenopodiaceae grass). Gas exchange, leaf water potential, and growth characteristics were investigated in two growing seasons in an arid area of Xinjiang to explore the physiological adaptability of the two halophytes. Both K. caspica and A. tatarica showed midday depression of transpiration, in- dicating that they were strong xerophytes and weak midday depression types. The roots of A. tatarica were con- centrated mainly in the 0-60 cm soil layer, and the leaf water potential (~L) increased sharply in the 0-20 cm layer due to high soil water content, suggesting that the upper soil was the main water source. On the other hand, K. caspica had a rooting depth of about 1.5 m and a larger root/shoot ratio, which confirmed that this species uptakes water mainly from deeper soil layer. Although A. tatarica had lower transpiration water consumption, higher water use efficiency (WUE), and less water demand at the same leaf water potential, it showed larger water stress impact than K. caspica, indicating that the growth of A. tatarica was restricted more than that of K. caspica when there was no rainfall recharge. As a shallow-rooted C4 species, A. tatarica displayed lower stomatal conductance, which could to some extent reduce transpiration water loss and maintain leaf water potential steadily. In contrast, the deep-rooted C3 species K. caspica had a larger root/shoot ratio that was in favor of exploiting groundwater. We concluded that C3 species (K. caspica) tapes water and C4 species (A. tatarica) reduces water loss to survive in the arid and saline conditions. The results provided a case for the phenotype theory of Schwinning and Ehleringer on halophytic plants.展开更多
Root distribution of three desert shrubs,Tamarix ramosissima Ledeb.,Haloxylon ammodendron(C.A.Mey.) Bunge and Reaumuria soongorica(Pall.) Maxim.was investigated under co-occurring conditions using a method for excavat...Root distribution of three desert shrubs,Tamarix ramosissima Ledeb.,Haloxylon ammodendron(C.A.Mey.) Bunge and Reaumuria soongorica(Pall.) Maxim.was investigated under co-occurring conditions using a method for excavating the whole root system.Assimilation shoot water potential and transpiration rates were monitored during the wet-dry cycle.Leaf-specific apparent hydraulic conductance and the index of water stress impact for the three species were calculated from shoot water potential and transpiration rate.The results showed that,along the soil profile,the root system of T.ramosissima mainly distributed at 50 to 310 cm interval,with an average total absorbing root-surface area of 30,249.2 cm2 per plant;the root system of H.ammodendraom distributed at 0 to 250 cm interval with an average total absorbing root-surface area of 12,847.3 cm2 per plant;the root system of R.soongorica distributed at 0-80 cm interval,with an average total absorbing root-surface area of 361.8 cm2.The root distribution shows the following:T.ramosissima uses groundwater as its main water source;H.ammodendraom uses both groundwater and rainwater;and R.soongorica uses rainwater only.During the wet-dry cycle,the hydraulic parameters of T.ramosissima showed no responses to precipitation.R.soongorica responded most significantly,and the responses of H.ammodendraom were intermediate.In conclusion,the plant response to rain events is closely related to their root distribution and plant water-use strategy.展开更多
文摘以夏玉米为材料,设4个灌水水平:337.5、6751、012.5、1 350 m3/hm2;4个施氮水平:75、150、225、300 kg N/hm2,研究限量灌溉和施氮对夏玉米苗期生长及生理指标的影响。结果表明:严重干旱会抑制玉米的生长。在玉米苗期,充分供水和高氮对玉米的生长不利,轻度亏缺与中氮组合使玉米苗期处于最佳生长状态,水氮共同作用对玉米的光合速率有促进作用;玉米苗期适度经受水分亏缺,有利于根系的生长;在同一施氮水平下,不同程度水分亏缺处理的根冠比(R/S)大于充分供水的处理。玉米苗期叶水势随灌水量的增大而增大,在灌水量相同时,叶水势随施氮量的增加而逐渐变大;干旱会使玉米光合速率下降,但适量增施氮肥可增加玉米的光合速率。
基金supported by the National Basic Research Program of China(2009CB825101)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20110008110035)
文摘This paper focused on the water relations of two halophytes differing in photosynthetic pathway, phe- notype, and life cycle: Karelinia caspica (Pall.) Less. (C3, deep-rooted perennial Asteraceae grass) and Atriplex tatarica L. (C4, shallow-rooted annual Chenopodiaceae grass). Gas exchange, leaf water potential, and growth characteristics were investigated in two growing seasons in an arid area of Xinjiang to explore the physiological adaptability of the two halophytes. Both K. caspica and A. tatarica showed midday depression of transpiration, in- dicating that they were strong xerophytes and weak midday depression types. The roots of A. tatarica were con- centrated mainly in the 0-60 cm soil layer, and the leaf water potential (~L) increased sharply in the 0-20 cm layer due to high soil water content, suggesting that the upper soil was the main water source. On the other hand, K. caspica had a rooting depth of about 1.5 m and a larger root/shoot ratio, which confirmed that this species uptakes water mainly from deeper soil layer. Although A. tatarica had lower transpiration water consumption, higher water use efficiency (WUE), and less water demand at the same leaf water potential, it showed larger water stress impact than K. caspica, indicating that the growth of A. tatarica was restricted more than that of K. caspica when there was no rainfall recharge. As a shallow-rooted C4 species, A. tatarica displayed lower stomatal conductance, which could to some extent reduce transpiration water loss and maintain leaf water potential steadily. In contrast, the deep-rooted C3 species K. caspica had a larger root/shoot ratio that was in favor of exploiting groundwater. We concluded that C3 species (K. caspica) tapes water and C4 species (A. tatarica) reduces water loss to survive in the arid and saline conditions. The results provided a case for the phenotype theory of Schwinning and Ehleringer on halophytic plants.
基金supported by National Natural Science Foundation of China (Grant No. 40725002)
文摘Root distribution of three desert shrubs,Tamarix ramosissima Ledeb.,Haloxylon ammodendron(C.A.Mey.) Bunge and Reaumuria soongorica(Pall.) Maxim.was investigated under co-occurring conditions using a method for excavating the whole root system.Assimilation shoot water potential and transpiration rates were monitored during the wet-dry cycle.Leaf-specific apparent hydraulic conductance and the index of water stress impact for the three species were calculated from shoot water potential and transpiration rate.The results showed that,along the soil profile,the root system of T.ramosissima mainly distributed at 50 to 310 cm interval,with an average total absorbing root-surface area of 30,249.2 cm2 per plant;the root system of H.ammodendraom distributed at 0 to 250 cm interval with an average total absorbing root-surface area of 12,847.3 cm2 per plant;the root system of R.soongorica distributed at 0-80 cm interval,with an average total absorbing root-surface area of 361.8 cm2.The root distribution shows the following:T.ramosissima uses groundwater as its main water source;H.ammodendraom uses both groundwater and rainwater;and R.soongorica uses rainwater only.During the wet-dry cycle,the hydraulic parameters of T.ramosissima showed no responses to precipitation.R.soongorica responded most significantly,and the responses of H.ammodendraom were intermediate.In conclusion,the plant response to rain events is closely related to their root distribution and plant water-use strategy.