The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that ope...The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.展开更多
A fast iterative approach of generalized forward-backward method with the spectrum acceleration algorithm (GFBM/SAA) is developed for solving electromagnetic field integral equation and is applied to numerical simulat...A fast iterative approach of generalized forward-backward method with the spectrum acceleration algorithm (GFBM/SAA) is developed for solving electromagnetic field integral equation and is applied to numerical simulation of radar surveillance of the ship target in oceanic clutters. Randomly rough surface is realized by the Monte Carlo method using the Pierson-Moskowitz spectrum. Numerical results of bistatic and back-scattering from the ship target and oceanic clutters demonstrate the functional dependencies upon the situation of radar surveillance such as the incidence and observation angles, radar altitude, ship RCS and other oceanic conditions.展开更多
基金Research Fund from Science and Technology on Underwater Vehicle Laboratory
文摘The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.
基金This work was supported by the China State Key Basic Research Project (Grant No. 2001CB309405) and the National Natural Science Foundation of China (Grant Nos. 49831060 and 6012009).
文摘A fast iterative approach of generalized forward-backward method with the spectrum acceleration algorithm (GFBM/SAA) is developed for solving electromagnetic field integral equation and is applied to numerical simulation of radar surveillance of the ship target in oceanic clutters. Randomly rough surface is realized by the Monte Carlo method using the Pierson-Moskowitz spectrum. Numerical results of bistatic and back-scattering from the ship target and oceanic clutters demonstrate the functional dependencies upon the situation of radar surveillance such as the incidence and observation angles, radar altitude, ship RCS and other oceanic conditions.