Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human...Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into three- dimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.展开更多
Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great ...Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great number of pipelines, numerous and diverse design constraints and large amount of obstacles, finding the optimum route of ship pipes is a complicated and time-consuming process. A modified NSGA-II algorithm based approach is proposed to find the near-optimal solution to solve the problem. By simplified equipment models, the layout space is firstly divided into three dimensional (3D) grids to build its mathematical model. In the modified NSGA-II algorithm, the concept of auxiliary point is introduced to improve the search range of maze algorithm (MA) as well as to guarantee the diversity of chromosomes in initial population. Then the fix-length coding mechanism is proposed, Fuzzy set theory is also adopted to select the optimal solution in Pareto solutions. Finally, the effectiveness and efficiency of the proposed approach is demonstrated by the contrast test and simulation. The merit of the proposed algorithm lies in that it can provide more appropriate solutions for the designers while subject certain constrains.展开更多
基金This work was funded by the National Natural Science Foundation of China (Grant No. 51275340).
文摘Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into three- dimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.
基金Supported by National Nature Science Foundation of China(Grant No:51275340)
文摘Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great number of pipelines, numerous and diverse design constraints and large amount of obstacles, finding the optimum route of ship pipes is a complicated and time-consuming process. A modified NSGA-II algorithm based approach is proposed to find the near-optimal solution to solve the problem. By simplified equipment models, the layout space is firstly divided into three dimensional (3D) grids to build its mathematical model. In the modified NSGA-II algorithm, the concept of auxiliary point is introduced to improve the search range of maze algorithm (MA) as well as to guarantee the diversity of chromosomes in initial population. Then the fix-length coding mechanism is proposed, Fuzzy set theory is also adopted to select the optimal solution in Pareto solutions. Finally, the effectiveness and efficiency of the proposed approach is demonstrated by the contrast test and simulation. The merit of the proposed algorithm lies in that it can provide more appropriate solutions for the designers while subject certain constrains.