A calcium shellac (CS) matrix was used to encapsulate polymeric melamine formaldehyde microcapsules (A) or CaCO3 nanoparticles-stabilized microcapsules (B), both of which encapsulated an oil-based active ingredi...A calcium shellac (CS) matrix was used to encapsulate polymeric melamine formaldehyde microcapsules (A) or CaCO3 nanoparticles-stabilized microcapsules (B), both of which encapsulated an oil-based active ingredient, producing A-CS or B-CS composite microcapsules. The mechanical properties and oil release profiles of the composite microcapsules were evaluated. The composite microcapsules showed enhanced mechanical stability and reduced leakage of the active ingredient hv one order of magnitude.展开更多
This study describes a new effective adsorbent for cadmium removal from aqueous solution synthesized by coating a shellac layer, a natural biodegradable and renewable resin with abundant hydroxyl and carboxylic groups...This study describes a new effective adsorbent for cadmium removal from aqueous solution synthesized by coating a shellac layer, a natural biodegradable and renewable resin with abundant hydroxyl and carboxylic groups, on the surface of iron oxide magnetic nanoparticles. Transmission Electron Microscopy (TEM) imaging showed shellac-coated magnetic nanoparticle (SCMN) adsorbents had a core-shell structure with a core of 20 nm and shell of 5 nm. Fourier Transform Infrared Spectroscopic analysis suggested the occurrence of reaction between carboxyl groups on the SCMN adsorbent surface and cadmium ions in aqueous solution. Kinetic data were well described by pseudo second-order model and adsorption isotherms were fitted with both Langmuir and Freundlich models with maximum adsorption capacity of 18.80 mg]g. SCMN adsorbents provided a favorable adsorption capacity under high salinity conditions, and cadmium could easily be desorbed using mild organic acid solutions at low concentration.展开更多
文摘A calcium shellac (CS) matrix was used to encapsulate polymeric melamine formaldehyde microcapsules (A) or CaCO3 nanoparticles-stabilized microcapsules (B), both of which encapsulated an oil-based active ingredient, producing A-CS or B-CS composite microcapsules. The mechanical properties and oil release profiles of the composite microcapsules were evaluated. The composite microcapsules showed enhanced mechanical stability and reduced leakage of the active ingredient hv one order of magnitude.
基金supported by the National Natural Science Foundation of China (No. 50808070, 51039001)the Program for New Century Excellent Talents in University from the Ministry of Education of China (No. NCET-09-0328)+4 种基金the Postdoctoral Science Foundation of China (No.20070410301, 200902468)the Program for Changjiang Scholars and Innovative Research Team in University(No. IRT0719)the Hunan Provincial Natural Science Foundation of China (No. 08JJ4006, 10JJ7005)the Xiangjiang Water Environmental Pollution Control Project subjected to the National Key Science and Technology Project for Water Environmental Pollution Control (No.2009ZX07212-001-02, 2009ZX07212-001-06)the Hunan Key Scientific Research Project (No. 2009FJ1010)
文摘This study describes a new effective adsorbent for cadmium removal from aqueous solution synthesized by coating a shellac layer, a natural biodegradable and renewable resin with abundant hydroxyl and carboxylic groups, on the surface of iron oxide magnetic nanoparticles. Transmission Electron Microscopy (TEM) imaging showed shellac-coated magnetic nanoparticle (SCMN) adsorbents had a core-shell structure with a core of 20 nm and shell of 5 nm. Fourier Transform Infrared Spectroscopic analysis suggested the occurrence of reaction between carboxyl groups on the SCMN adsorbent surface and cadmium ions in aqueous solution. Kinetic data were well described by pseudo second-order model and adsorption isotherms were fitted with both Langmuir and Freundlich models with maximum adsorption capacity of 18.80 mg]g. SCMN adsorbents provided a favorable adsorption capacity under high salinity conditions, and cadmium could easily be desorbed using mild organic acid solutions at low concentration.