Rice kernel shape affects kernel quality(appearance) and yield(1000-kernel weight) and therefore is an important agronomic trait, but its inheritance is complicated. We identified a long-kernel rice chromosome segment...Rice kernel shape affects kernel quality(appearance) and yield(1000-kernel weight) and therefore is an important agronomic trait, but its inheritance is complicated. We identified a long-kernel rice chromosome segment substitution line(CSSL), Z741, derived from Nipponbare as a recipient and Xihui 18 as a donor parent. Z741 has six substitution segments distributed on rice chromosomes 3, 6, 7, 8 and 12 with an average replacement length of 5.82 Mb. Analysis of a secondary F2 population from a cross between Nipponbare and Z741 identified 20 QTLs for important agronomic traits. The kernel length of Z741 is controlled by a major QTL(qKL3) and a minor QTL(qKL7). Candidate gene prediction and sequencing indicated that qKL3 may be an allele of OsPPKL1, which encodes a protein phosphatase implicated in brassinosteroid signaling, and qKL7 is an unreported QTL. Finally, we validated eight QTLs(qKL3, qKL7, qRLW3-1, qRLW7, qPH3-1, qKWT3, qKWT7 and qNPB6) using three selected singlesegment substitution lines(SSSLs), S1, S2 and S3. Also, we detected five QTLs(qKL6, qKW3, qKW7, qKW6 and qRLW6) in S1, S2 and S3, which were not found in the Nipponbare/Z741 F2 population. However, qNPB3, qNPB7 and qPL3 QTLs were not validated by the three SSSLs in 2019, suggesting that minor QTLs are susceptible to environmental factors. These results lay the foundation for studying the biodiversity of kernal length and molecular breeding of different kernel types.展开更多
Rice grain shape is one of the important factors affecting grain quality and yield,but it is liable to be influenced by genetic backgrounds and environments.The chromosome single segment substitution lines(SSSLs) in r...Rice grain shape is one of the important factors affecting grain quality and yield,but it is liable to be influenced by genetic backgrounds and environments.The chromosome single segment substitution lines(SSSLs) in rice have been considered as ideal populations to identify the quantitative trait loci(QTLs).In this study,22 QTLs affecting rice grain shape were detected to be distributed on eight chromosomes except chromosomes 6,9,11 and 12 by using SSSLs.Among them,seven QTLs conditioned grain length,six conditioned grain width,five affected grain length-width ratio and four controlled grain thickness.展开更多
Peanut pod shape is a heritable trait which affects the market acceptance of in-shell peanut products.In order to determine the genetic control of pod shape,six component traits of pod shape(pod length,pod width,pod l...Peanut pod shape is a heritable trait which affects the market acceptance of in-shell peanut products.In order to determine the genetic control of pod shape,six component traits of pod shape(pod length,pod width,pod length/width ratio,pod roundness,beak degree and constriction degree)were measured using an image-based phenotyping method.A recombinant inbred line(RIL)population consisting of 181 lines was phenotyped across three environments.Continuous distributions and transgressive segregations were demonstrated in all measured traits and environments.Significant correlations were found among most component traits with broad-sense heritability ranging from 0.87 to 0.95.Quantitative trait locus(QTL)analysis yielded 26 additive QTLs explaining 3.79 to 52.37%phenotypic variations.A novel,stable and major QTL region conditioning multiple shape features was detected on chromosome 2,which spans a 10.81-Mb genomic region with 543 putative genes.Bioinformatics analysis revealed several candidate genes in this region.In addition,73 pairs of epistatic interactions involving 92 loci were identified for six component traits explaining 0.94–6.45%phenotypic variations.These results provide new genetic loci to facilitate genomics-assisted breeding of peanut pod shape.展开更多
基金supported by the National Key Research Plan Project of China(Grant No.2017YFD0101107)Chongqing Technical Innovation and Application Development Project(Grant No.cstc2019jscx-msxmX0392)。
文摘Rice kernel shape affects kernel quality(appearance) and yield(1000-kernel weight) and therefore is an important agronomic trait, but its inheritance is complicated. We identified a long-kernel rice chromosome segment substitution line(CSSL), Z741, derived from Nipponbare as a recipient and Xihui 18 as a donor parent. Z741 has six substitution segments distributed on rice chromosomes 3, 6, 7, 8 and 12 with an average replacement length of 5.82 Mb. Analysis of a secondary F2 population from a cross between Nipponbare and Z741 identified 20 QTLs for important agronomic traits. The kernel length of Z741 is controlled by a major QTL(qKL3) and a minor QTL(qKL7). Candidate gene prediction and sequencing indicated that qKL3 may be an allele of OsPPKL1, which encodes a protein phosphatase implicated in brassinosteroid signaling, and qKL7 is an unreported QTL. Finally, we validated eight QTLs(qKL3, qKL7, qRLW3-1, qRLW7, qPH3-1, qKWT3, qKWT7 and qNPB6) using three selected singlesegment substitution lines(SSSLs), S1, S2 and S3. Also, we detected five QTLs(qKL6, qKW3, qKW7, qKW6 and qRLW6) in S1, S2 and S3, which were not found in the Nipponbare/Z741 F2 population. However, qNPB3, qNPB7 and qPL3 QTLs were not validated by the three SSSLs in 2019, suggesting that minor QTLs are susceptible to environmental factors. These results lay the foundation for studying the biodiversity of kernal length and molecular breeding of different kernel types.
基金supported by the National Basic Research Program of China(Grant No.2005CB120807)
文摘Rice grain shape is one of the important factors affecting grain quality and yield,but it is liable to be influenced by genetic backgrounds and environments.The chromosome single segment substitution lines(SSSLs) in rice have been considered as ideal populations to identify the quantitative trait loci(QTLs).In this study,22 QTLs affecting rice grain shape were detected to be distributed on eight chromosomes except chromosomes 6,9,11 and 12 by using SSSLs.Among them,seven QTLs conditioned grain length,six conditioned grain width,five affected grain length-width ratio and four controlled grain thickness.
基金supported by the National Natural Science Foundation of China(32001584)the Natural Science Foundation of Shandong Province,China(ZR202111290099)+2 种基金the Breeding Project from Department Science&Technology of Shandong Province,China(2020LZGC001)the Agricultural Scientific and the Technological Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2022A21,CXGC2022A03,and CXGC2023A06(A39 and A46))the Qingdao People’s Livelihood Science and Technology Program,China(20-3-4-26-nsh)。
文摘Peanut pod shape is a heritable trait which affects the market acceptance of in-shell peanut products.In order to determine the genetic control of pod shape,six component traits of pod shape(pod length,pod width,pod length/width ratio,pod roundness,beak degree and constriction degree)were measured using an image-based phenotyping method.A recombinant inbred line(RIL)population consisting of 181 lines was phenotyped across three environments.Continuous distributions and transgressive segregations were demonstrated in all measured traits and environments.Significant correlations were found among most component traits with broad-sense heritability ranging from 0.87 to 0.95.Quantitative trait locus(QTL)analysis yielded 26 additive QTLs explaining 3.79 to 52.37%phenotypic variations.A novel,stable and major QTL region conditioning multiple shape features was detected on chromosome 2,which spans a 10.81-Mb genomic region with 543 putative genes.Bioinformatics analysis revealed several candidate genes in this region.In addition,73 pairs of epistatic interactions involving 92 loci were identified for six component traits explaining 0.94–6.45%phenotypic variations.These results provide new genetic loci to facilitate genomics-assisted breeding of peanut pod shape.