浅水流(shallow water flow,简称SWF)灾害被看作深水钻探中面临的重要挑战之一,它是指深水钻探中,钻头钻过一超压砂层时,孔隙压力太大以致砂和水激烈流进到井眼里,导致了井和钻井平台损坏的事件.SWF问题仅发生在深水区,位于海底泥线下...浅水流(shallow water flow,简称SWF)灾害被看作深水钻探中面临的重要挑战之一,它是指深水钻探中,钻头钻过一超压砂层时,孔隙压力太大以致砂和水激烈流进到井眼里,导致了井和钻井平台损坏的事件.SWF问题仅发生在深水区,位于海底泥线下几百米以下,主要出现在一种原位超压的未固结的斜状砂体中,这种砂体一般被低渗透的泥覆盖.超压的形成常认为是快速沉积压实所致,也可能与构造因素或水合物分解有关.SWF砂体具有低密度、低速度和高Vp/Vs的性质,是可能被地震勘探方法所检测的.我国即将进入深水钻探领域,为了避免或减轻深水钻探中可能面对的SWF灾害,我们建议开展有关SWF灾害问题的前期研究.展开更多
In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow(SWF) formations during deepwater drilling. We define ‘sand' as a pseudo-component ...In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow(SWF) formations during deepwater drilling. We define ‘sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed(penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.展开更多
文摘浅水流(shallow water flow,简称SWF)灾害被看作深水钻探中面临的重要挑战之一,它是指深水钻探中,钻头钻过一超压砂层时,孔隙压力太大以致砂和水激烈流进到井眼里,导致了井和钻井平台损坏的事件.SWF问题仅发生在深水区,位于海底泥线下几百米以下,主要出现在一种原位超压的未固结的斜状砂体中,这种砂体一般被低渗透的泥覆盖.超压的形成常认为是快速沉积压实所致,也可能与构造因素或水合物分解有关.SWF砂体具有低密度、低速度和高Vp/Vs的性质,是可能被地震勘探方法所检测的.我国即将进入深水钻探领域,为了避免或减轻深水钻探中可能面对的SWF灾害,我们建议开展有关SWF灾害问题的前期研究.
基金Financial supports by the 973 National Research Project of China (No. 2015CB251201)the program for Changjiang Scholars and Innovative Research Team in University (‘PCSIRT’) (IRT_14R58)the Fundamental Research Funds for the Central Universities (No. 15CX0 5036A)
文摘In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow(SWF) formations during deepwater drilling. We define ‘sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed(penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.