The model test of seismic simulation shaking table is an important method to study the seismic design of bridge structure. In order to evaluate the seismic response and dynamic characteristics of pile-water-pier syste...The model test of seismic simulation shaking table is an important method to study the seismic design of bridge structure. In order to evaluate the seismic response and dynamic characteristics of pile-water-pier system for developing more reliable design procedures, shaking table model tests of a submerged bridge pier system, including pile groups-cap-pier and inertia mass, were conducted. Since different similitude laws corresponding to different test objectives affected the validity of test results, the similitude law with the aim to consider the effect of hydrodynamic pressure was proposed and confirmed through an actual example. Based on the test results, the effect of water around model on seismic response under seismic excitation input was analyzed and the failure level was judged by observing the variation of basic frequency. The test results indicate that the transfer function of analytical model with water is different from that without water, the natural frequency without water is always higher than that with water, and the first modal shapes are various. It is also concluded that the similitude law is suitable for practical application and the dynamic characteristics and seismic response of the structure system can be changed because of the existence of the surrounding water, which should be paid much attention in the further investigation.展开更多
It is difficult to conduct shaking table tests that require large-displacement high-frequency seismic excitation due to the limited capacity of existing electrohydraulic servo systems.To address this problem,a double-...It is difficult to conduct shaking table tests that require large-displacement high-frequency seismic excitation due to the limited capacity of existing electrohydraulic servo systems.To address this problem,a double-layer shaking table(DLST)is proposed.The DLST has two layers of one table each(i.e.,an upper table and lower table)and aims at reproducing target seismic excitation on the upper table.The original signal is separated into two signals(i.e.,a high-frequency signal and low-frequency signal)through a fast Fourier transform/inverse fast Fourier transform process,and these signals are applied to the two tables separately.The actuators connected to different tables only need to generate large-displacement low-frequency or small-displacement high-frequency movements.The three-variable control method is used to generate large-displacement but low-frequency motion of the lower table and high-frequency but small-displacement motion of the upper table relative to the table beneath.A series of simulations are carried out using MATLAB/Simulink.The simulation results suggest that the DLST can successfully generate large-displacement high-frequency excitation.The control strategy in which the lower table tracks the low-frequency signal and the upper table tracks the original signal is recommended.展开更多
基金National Basic Research Program of China ("973" Program,No.2011CB013605-4)National Natural Science Foundation of China(No.51178079)Major Program of National Natural Science Foundation of China (No.90915011)
文摘The model test of seismic simulation shaking table is an important method to study the seismic design of bridge structure. In order to evaluate the seismic response and dynamic characteristics of pile-water-pier system for developing more reliable design procedures, shaking table model tests of a submerged bridge pier system, including pile groups-cap-pier and inertia mass, were conducted. Since different similitude laws corresponding to different test objectives affected the validity of test results, the similitude law with the aim to consider the effect of hydrodynamic pressure was proposed and confirmed through an actual example. Based on the test results, the effect of water around model on seismic response under seismic excitation input was analyzed and the failure level was judged by observing the variation of basic frequency. The test results indicate that the transfer function of analytical model with water is different from that without water, the natural frequency without water is always higher than that with water, and the first modal shapes are various. It is also concluded that the similitude law is suitable for practical application and the dynamic characteristics and seismic response of the structure system can be changed because of the existence of the surrounding water, which should be paid much attention in the further investigation.
基金Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2019EEEVL0502Natural Science Foundation of China under Grant No.52078275+1 种基金the Institute for Guo Qiang,Tsinghua University under Grant No.2019GQC0001Beijing Natural Science Foundation under Grant No.JQ18029。
文摘It is difficult to conduct shaking table tests that require large-displacement high-frequency seismic excitation due to the limited capacity of existing electrohydraulic servo systems.To address this problem,a double-layer shaking table(DLST)is proposed.The DLST has two layers of one table each(i.e.,an upper table and lower table)and aims at reproducing target seismic excitation on the upper table.The original signal is separated into two signals(i.e.,a high-frequency signal and low-frequency signal)through a fast Fourier transform/inverse fast Fourier transform process,and these signals are applied to the two tables separately.The actuators connected to different tables only need to generate large-displacement low-frequency or small-displacement high-frequency movements.The three-variable control method is used to generate large-displacement but low-frequency motion of the lower table and high-frequency but small-displacement motion of the upper table relative to the table beneath.A series of simulations are carried out using MATLAB/Simulink.The simulation results suggest that the DLST can successfully generate large-displacement high-frequency excitation.The control strategy in which the lower table tracks the low-frequency signal and the upper table tracks the original signal is recommended.