As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment...As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article.展开更多
Most of infrastructure projects around the world have to focus on a clear understanding of geological model which may be determined from various sources of information. The limitation in geotechnical data and budget a...Most of infrastructure projects around the world have to focus on a clear understanding of geological model which may be determined from various sources of information. The limitation in geotechnical data and budget affects the accuracy of the geological model, particularly for projects of long and deep tunnel of which accessibility to the excavation points is difficult and far reaching. Therefore, an approach adopted for interpretation plays an important role in the level of uncertainty of the derived geological model. This paper focuses on the determination of the geological models at the site of a long water diversion tunnel project in a complex geologic setting in northern Thailand from an approach to understand the relationship between regional tectonic setting and local tectonic condition so that geological structures and rock mass conditions along the tunnel alignment can be assessed for a better planning of tunnel design and construction. The paper describes tectonic settings at regional scale (Northern Thailand and Eastern Myanmar), tectonic features and geologic condition in project area, geotechnical investigation and data along tunnel alignment and predicted tunnel ground behavior.展开更多
基金"Development of the Map of General Seismic Zoning in the Territory of the Republic of Kazakhstan" (state registration 0113RK01142)"Development of the map of Seismic Microzoning of the Territory of Almaty City"(state registration 0115RK02701)funded within the state funding
文摘As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article.
文摘Most of infrastructure projects around the world have to focus on a clear understanding of geological model which may be determined from various sources of information. The limitation in geotechnical data and budget affects the accuracy of the geological model, particularly for projects of long and deep tunnel of which accessibility to the excavation points is difficult and far reaching. Therefore, an approach adopted for interpretation plays an important role in the level of uncertainty of the derived geological model. This paper focuses on the determination of the geological models at the site of a long water diversion tunnel project in a complex geologic setting in northern Thailand from an approach to understand the relationship between regional tectonic setting and local tectonic condition so that geological structures and rock mass conditions along the tunnel alignment can be assessed for a better planning of tunnel design and construction. The paper describes tectonic settings at regional scale (Northern Thailand and Eastern Myanmar), tectonic features and geologic condition in project area, geotechnical investigation and data along tunnel alignment and predicted tunnel ground behavior.