期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于图表示学习的会话感知推荐模型 被引量:20
1
作者 曾义夫 牟其林 +2 位作者 周乐 蓝天 刘峤 《计算机研究与发展》 EI CSCD 北大核心 2020年第3期590-603,共14页
根据历史记录预测用户的下一次点击(即基于会话的推荐)是推荐系统中一个重要的子任务.重点研究会话推荐中如何在不牺牲预测准确性的情况下缓解用户的兴趣漂移问题,提高用户满意度.基本思想是从全局统计的角度出发,建立一个用于表示物品... 根据历史记录预测用户的下一次点击(即基于会话的推荐)是推荐系统中一个重要的子任务.重点研究会话推荐中如何在不牺牲预测准确性的情况下缓解用户的兴趣漂移问题,提高用户满意度.基本思想是从全局统计的角度出发,建立一个用于表示物品先后点击顺序的物品依赖关系图,据此提出一种图表示学习算法,生成可以保留关联物品间复杂关联关系的物品向量表达,最后,基于长短期记忆机制,将物品向量表达作为“固定”输入,从而构建一个可以同时捕捉用户长期兴趣和短期兴趣的会话感知推荐模型.不同于其他相关工作,首次提出将下一次点击预测模型建立在“固定”物品表达的基础上.在公开数据集上的实验结果表明:提出的推荐模型在预测准确性和推荐多样新颖性上的表现优于其他相关方法. 展开更多
关键词 基于会话的推荐系统 行为建模 图表示学习 用户兴趣 神经网络
下载PDF
考虑用户意图和时间间隔的会话型深度学习推荐系统 被引量:7
2
作者 刘浩翰 吕鑫 李建伏 《计算机应用与软件》 北大核心 2021年第3期190-195,223,共7页
基于循环神经网络的会话型推荐系统在建模用户点击行为时,无法同时考虑用户行为之间的时间间隔和用户的主要意图。针对该问题,在现有的基于注意力机制的会话型推荐系统和仅考虑用户行为时间间隔的Time-LSTM的深度学习模型的基础上提出... 基于循环神经网络的会话型推荐系统在建模用户点击行为时,无法同时考虑用户行为之间的时间间隔和用户的主要意图。针对该问题,在现有的基于注意力机制的会话型推荐系统和仅考虑用户行为时间间隔的Time-LSTM的深度学习模型的基础上提出一个新的基于会话的推荐系统TASR。利用Time-LSTM建模时间间隔影响用户行为,并利用注意力机制捕获用户的主要意图。在两个公开数据集上的实验验证了该算法的有效性。 展开更多
关键词 行为建模 基于会话的推荐系统 注意力机制 时间间隔 用户意图
下载PDF
循环神经网络和注意力增强的门控图神经网络会话推荐模型
3
作者 李伟玥 朱志国 +2 位作者 董昊 姜盼 高明 《模式识别与人工智能》 EI CSCD 北大核心 2024年第3期191-206,共16页
现有大部分基于图神经网络的会话推荐系统都可较好捕捉商品在会话图中的近邻上下文关系,但少有重点关注时序关系的系统.然而,这两种关系都对电商场景下的精准推荐具有重要作用.为此,文中基于双向长短期记忆网络和门控图神经网络,提出循... 现有大部分基于图神经网络的会话推荐系统都可较好捕捉商品在会话图中的近邻上下文关系,但少有重点关注时序关系的系统.然而,这两种关系都对电商场景下的精准推荐具有重要作用.为此,文中基于双向长短期记忆网络和门控图神经网络,提出循环神经网络和注意力增强的门控图神经网络会话推荐模型,旨在实现不同网络结构的优势互补,充分学习用户在当前会话中表现的兴趣偏好.具体地,文中模型采用并行化框架结构,分别学习电商场景下用户会话点击流中商品间的近邻上下文特征和时序关系,再分别使用注意力机制进行去噪处理,最后基于门控机制实现这两种特征间的自适应融合.在3个真实数据集上的实验表明文中模型的性能较优.文中模型代码见https://github.com/usernameAI/RAGGNN. 展开更多
关键词 会话推荐系统 图神经网络 循环神经网络 注意力机制
下载PDF
基于霍克斯过程和图神经网络的会话推荐
4
作者 杨真真 闫孟儒 +1 位作者 杨永鹏 陈亚杰 《信号处理》 CSCD 北大核心 2024年第4期757-765,共9页
针对传统会话推荐系统(Session-Based Recommendation System, SBRS)往往忽略了项目点击量之间的交互,以及遗漏了会话内项目之间的相对顺序的问题,本文提出了一种基于霍克斯过程和图神经网络(Hawkes Process and Graph Neural Network, ... 针对传统会话推荐系统(Session-Based Recommendation System, SBRS)往往忽略了项目点击量之间的交互,以及遗漏了会话内项目之间的相对顺序的问题,本文提出了一种基于霍克斯过程和图神经网络(Hawkes Process and Graph Neural Network, HPGNN)的会话推荐方法。该方法提出了包含图神经位置感知层和图神经霍克斯层的双流结构,分别学习用户的长期和短期偏好。图神经位置感知层通过门控图神经网络(Gated Graph Neural Network, GGNN)来捕捉各个节点之间的交互关系,得到会话中每个项目的隐向量表示,并引入逐次递减的残差网络,有效地将之前的编码信息与当前网络融合,然后通过位置感知注意力网络来捕捉项目节点在会话中的位置信息,用于学习用户的长期偏好表示。图神经霍克斯层通过将霍克斯过程和GGNN相结合来捕捉连续时间的项目点击量之间的关系,用于更准确的表示用户的短期偏好。最后将两者进行线性组合,来更好地描述用户意图。实验结果表明,提出的HPGNN在Diginetica和Yoochoose1/64两个基准会话推荐数据集上的推荐性能均优于其他会话推荐模型。 展开更多
关键词 会话推荐 推荐系统 图神经网络 霍克斯过程 位置感知注意力网络
下载PDF
融合项目影响力的图神经网络会话推荐模型 被引量:1
5
作者 孙轩宇 史艳翠 《计算机应用》 CSCD 北大核心 2023年第12期3689-3696,共8页
针对现有的会话推荐模型难以显式地表示项目对推荐结果的影响的问题,提出一种融合项目影响力的图神经网络会话推荐模型(SR-II)。首先,提出一种新的边权重计算方法,将计算结果作为图结构中转移关系的影响力权重,并用图神经网络(GNN)的影... 针对现有的会话推荐模型难以显式地表示项目对推荐结果的影响的问题,提出一种融合项目影响力的图神经网络会话推荐模型(SR-II)。首先,提出一种新的边权重计算方法,将计算结果作为图结构中转移关系的影响力权重,并用图神经网络(GNN)的影响力图门控层提取该图的特征;其次,提出改进的捷径图连接有关联的项目,有效捕获远程依赖,丰富图结构所能表达的信息,并通过注意力机制的捷径图注意力层提取该图的特征;最后,通过结合上述两层,构建推荐模型。在Diginetica和Gowalla数据集上的实验结果中,SR-II的HR@20最高达到53.12%,MRR@20最高达到25.79%。在Diginetica数据集上,相较于同一表征空间下基于训练模型的会话推荐(CORE-trm),SR-II在HR@20上提升了1.10%,在MRR@20上提升了1.21%。在Gowalla数据集上,相较于基于会话的自注意网络推荐(SR-SAN),SR-II在HR@20上提升了1.73%;相较于基于无损边缘保留聚合和捷径图注意力的推荐(LESSR)模型,SR-II在MRR@20上提升了1.14%。实验结果表明SR-II的推荐效果优于对比模型,具有更高的推荐精度。 展开更多
关键词 会话推荐 推荐系统 图神经网络 注意力机制 会话图
下载PDF
基于全局特征增强的会话推荐算法
6
作者 靳博文 王庆梅 +1 位作者 胡承佐 魏嘉呈 《计算机科学》 CSCD 北大核心 2023年第S02期459-466,共8页
基于会话的推荐系统的研究通常侧重于在使用浅层神经网络的同时通过聚集节点的K跳邻域来对当前会话用户偏好建模,但是此类方法面临着过平滑的问题。为此,提出了一种基于全局特征增强的会话推荐算法(GFE-SR)。首先,该方法在会话图中利用... 基于会话的推荐系统的研究通常侧重于在使用浅层神经网络的同时通过聚集节点的K跳邻域来对当前会话用户偏好建模,但是此类方法面临着过平滑的问题。为此,提出了一种基于全局特征增强的会话推荐算法(GFE-SR)。首先,该方法在会话图中利用图神经网络和注意力机制获得会话级项目表示。其次,在全局图的特征传播阶段给每个节点的最近邻域按比例赋予权重来限制过平滑问题,通过全局图进行特征表征融合,获得特征增强的全局级项目表示。然后,通过注意力机制聚合两种项目表示对当前会话的用户偏好进行建模,最终输出候选项目的预测概率。在3个基准数据集上的实验表明,该方法的性能优于现有的最佳方法如GCE-GNN等,最高可提升5.2%,证明了该方法的有效性。 展开更多
关键词 会话推荐 推荐系统 图卷积网络 注意力机制 过平滑
下载PDF
基于改进胶囊网络的会话型推荐模型
7
作者 孙浩 曹健 +1 位作者 李海生 毛典辉 《计算机应用》 CSCD 北大核心 2023年第4期1043-1049,共7页
针对现有的会话型推荐模型难以从简短的会话中捕获项目之间的依赖关系的问题,在考虑了复杂的项目交互和动态的用户兴趣变化后,提出了一种基于会话型推荐的改进胶囊网络(SR-ECN)模型。首先,利用图神经网络(GNN)处理会话序列数据,以得到... 针对现有的会话型推荐模型难以从简短的会话中捕获项目之间的依赖关系的问题,在考虑了复杂的项目交互和动态的用户兴趣变化后,提出了一种基于会话型推荐的改进胶囊网络(SR-ECN)模型。首先,利用图神经网络(GNN)处理会话序列数据,以得到每个项目嵌入向量;然后,利用胶囊网络的动态路由机制,从交互历史中聚合高级用户的偏好;此外,所提模型引入自注意力网络进一步考虑用户和项目的潜在信息,从而为用户推荐更合适的项目。实验结果表明,在Yoochoose数据集上,所提模型的召回率和平均倒数排名(MRR)均优于SR-GNN(Session-based Recommendation with GNN)、TAGNN(Target Attentive GNN)等所有对比模型,与基于无损边缘保留聚合和快捷图注意力的推荐(LESSR)模型相比,所提模型的召回率和MRR分别提升了0.92和0.45个百分点,验证了改进胶囊网络对用户兴趣偏好提取的有效性。 展开更多
关键词 胶囊网络 会话型推荐 图神经网络 自注意力机制 推荐系统
下载PDF
多通道图神经网络的层次化融合模型用于增强会话的推荐
8
作者 岳彩梦 彭敦陆 《小型微型计算机系统》 CSCD 北大核心 2024年第7期1599-1607,共9页
基于会话的推荐系统(SBR)旨在根据用户历史的行为去预测下一个最有可能点击的项目.一方面由于会话推荐序列较短,可用的信息比较少,另一方面会话推荐多为匿名用户,没有丰富的用户信息,导致无法获得用户历史的交互行为或者用户的偏好,这为... 基于会话的推荐系统(SBR)旨在根据用户历史的行为去预测下一个最有可能点击的项目.一方面由于会话推荐序列较短,可用的信息比较少,另一方面会话推荐多为匿名用户,没有丰富的用户信息,导致无法获得用户历史的交互行为或者用户的偏好,这为SBR带来了挑战.现有基于SBR研究方法大都是将会话序列建模为成对的图结构化数据或者建模为超图结构化数据,这种将会话序列建模为单一图的方法无法捕获更完整的项目转化信息,从而降低模型的准确度.为了充分考虑会话之间的相互影响,本文提出了一种多通道图神经网络的层次化融合模型用于增强会话的推荐(HFMC-SBR).模型首先将会话序列建模为全局图、局部图和超图数据,然后分别使用全局编码层和局部编码层以及超图卷机神经网络来捕获节点之间复杂的依赖性关系,学习3种项目嵌入,进而获得全局、局部以及超图项目表示信息,进而引入3层融合模型将三通道融合形成项目表示获得完整的项目转化信息,同时使用注意力机制和反向位置编码对全局上下文和局部上下文信息以及超图通道捕获的会话之间的高阶关系进行有效的融合.实验表明,本文所提出的模型HFMC-SBR,在Tmall、Diginetica和Yoochoose3种数据集上所表现的性能优于基线模型. 展开更多
关键词 基于会话的推荐系统 多通道信息融合 层级融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部