Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to...Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are –3.78% and –1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.展开更多
The ability of a pavement structure in carrying out its function reduces in line with the increase of traffic load, especially if there are overloaded heavy vehicle passing through the road. This study was done to kno...The ability of a pavement structure in carrying out its function reduces in line with the increase of traffic load, especially if there are overloaded heavy vehicle passing through the road. This study was done to know the effect of overloading vehicles on the road pavement and remaining service life of the pavement. In this study, the service life of pavement due to overloaded vehicles was analyzed using the AASHTO 1993. In Narayanghat-Mugling road the composition of traffic seems to be 83.76% heavy vehicles, 9.18% medium vehicle and 7.05% light vehicle. For the direction of Narayanghat-Mugling, the pavement service life might be reduced by 59.90% due to overloading condition, while for the opposite direction, the service life would not reduced caused by the same factor. The impact of overload conditions on the road pavement showed premature failure;that is, a condition which the damage reduced the life of roads before the design life of the road is reached. From the results, it can be concluded that overloaded vehicles on the road are very influential to the reduction in pavement service life. Therefore, it is expected that road users to comply with existing regulations in the conduct of transportation. As overloading is increasing, it has to be controlled by rules and regulations with penalty to control the overloading. So fines must be associated with intensified enforcement when considered in further strategy. Regular monitoring, inspection and enforcement are the effective ways to control overloading. Use of technology (Automatic overloading information system) may be the effective way to control the overloading.展开更多
基金Supported by National High Technology Research and Development Program of China (Grant No.2011AA11A265)National Natural Science Foundation of China (Grant Nos.50875173,51105241)Shanghai Municipal Natural Science Foundation of China (Grant No.11ZR1414700)
文摘Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are –3.78% and –1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.
文摘The ability of a pavement structure in carrying out its function reduces in line with the increase of traffic load, especially if there are overloaded heavy vehicle passing through the road. This study was done to know the effect of overloading vehicles on the road pavement and remaining service life of the pavement. In this study, the service life of pavement due to overloaded vehicles was analyzed using the AASHTO 1993. In Narayanghat-Mugling road the composition of traffic seems to be 83.76% heavy vehicles, 9.18% medium vehicle and 7.05% light vehicle. For the direction of Narayanghat-Mugling, the pavement service life might be reduced by 59.90% due to overloading condition, while for the opposite direction, the service life would not reduced caused by the same factor. The impact of overload conditions on the road pavement showed premature failure;that is, a condition which the damage reduced the life of roads before the design life of the road is reached. From the results, it can be concluded that overloaded vehicles on the road are very influential to the reduction in pavement service life. Therefore, it is expected that road users to comply with existing regulations in the conduct of transportation. As overloading is increasing, it has to be controlled by rules and regulations with penalty to control the overloading. So fines must be associated with intensified enforcement when considered in further strategy. Regular monitoring, inspection and enforcement are the effective ways to control overloading. Use of technology (Automatic overloading information system) may be the effective way to control the overloading.