Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability o...Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability of harvesting light energy and wide distribution, and appear to have a particular role in the ocean's carbon cycling. Yet the global pattern of AAPB distribution was controversial at the beginning of the 21 st century due to the defects of the AAPB enumeration methods. An advanced time-series observation-based infrared epifluorescence microscopy(TIREM) approach was established to amend the existing AAPB quantitative deviation and led to the accurate enumeration of AAPB in marine environments. The abundance of AAPB and AAPB% were higher in coastal and continental shelf waters than in oceanic waters, which does not support the idea that AAPB are specifically adapted to oligotrophic conditions due to photosynthesis in AAPB acting a supplement to their organic carbon respiration. Further investigation revealed that dependence of AAPB on dissolved organic carbon produced by phytoplankton(PDOC) may limit their competition and control AAPB distribution. So, the selection of carbon sources by AAPB indicated that they can effectively fractionate the carbon flow in the sea. Enlightened by these findings, the following studies on the interactions between marine microbes and DOC led to the discovery of a new mechanism of marine carbon sequestration—the Microbial Carbon Pump(MCP). The conceptual framework of MCP addresses the sources and mechanism of the vast DOC reservoir in the ocean and represents a breakthrough in the theory of ocean carbon sequestration.展开更多
In this paper,combined with the actual situation encountered in the process of product transportation,the finite element analysis software ANSYS/LS-DYNA was used to simulate the dynamic drop process of the buffer pack...In this paper,combined with the actual situation encountered in the process of product transportation,the finite element analysis software ANSYS/LS-DYNA was used to simulate the dynamic drop process of the buffer packaging structure of T01067∗series fuel pump,and the simulation results were analyzed,and a conclusion was drawn.According to the fuel pump weight calculation buffer material thickness,according to the product size and structure design of the pulp molded cushion structure,simulation of static cushioning performance,and dynamic drop simulation,for the subsequent structural optimization cost reduction to provide early warning[1,2].Check the simulation production cost,reducemany times a large number of experiments and time,structure is ideal type prediction,find out the ideal optimization total,physical test,further optimization and improvement[3].展开更多
基金Ministry of Science and Technology of the People’s Republic of China Project (Grant No. 2011IM010700)the National Natural Science Foundation of China (Grant Nos. 91428308, 41422603 and 41176095)the State Oceanic Administration of China Project (Grant No. GASI-03-01-02-03)
文摘Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability of harvesting light energy and wide distribution, and appear to have a particular role in the ocean's carbon cycling. Yet the global pattern of AAPB distribution was controversial at the beginning of the 21 st century due to the defects of the AAPB enumeration methods. An advanced time-series observation-based infrared epifluorescence microscopy(TIREM) approach was established to amend the existing AAPB quantitative deviation and led to the accurate enumeration of AAPB in marine environments. The abundance of AAPB and AAPB% were higher in coastal and continental shelf waters than in oceanic waters, which does not support the idea that AAPB are specifically adapted to oligotrophic conditions due to photosynthesis in AAPB acting a supplement to their organic carbon respiration. Further investigation revealed that dependence of AAPB on dissolved organic carbon produced by phytoplankton(PDOC) may limit their competition and control AAPB distribution. So, the selection of carbon sources by AAPB indicated that they can effectively fractionate the carbon flow in the sea. Enlightened by these findings, the following studies on the interactions between marine microbes and DOC led to the discovery of a new mechanism of marine carbon sequestration—the Microbial Carbon Pump(MCP). The conceptual framework of MCP addresses the sources and mechanism of the vast DOC reservoir in the ocean and represents a breakthrough in the theory of ocean carbon sequestration.
文摘In this paper,combined with the actual situation encountered in the process of product transportation,the finite element analysis software ANSYS/LS-DYNA was used to simulate the dynamic drop process of the buffer packaging structure of T01067∗series fuel pump,and the simulation results were analyzed,and a conclusion was drawn.According to the fuel pump weight calculation buffer material thickness,according to the product size and structure design of the pulp molded cushion structure,simulation of static cushioning performance,and dynamic drop simulation,for the subsequent structural optimization cost reduction to provide early warning[1,2].Check the simulation production cost,reducemany times a large number of experiments and time,structure is ideal type prediction,find out the ideal optimization total,physical test,further optimization and improvement[3].