Grandi’s paradox, which was posed for a real function of the form <span style="white-space:nowrap;">1/(1+ <em>x</em>)</span>, has been resolved and extended to complex valued functio...Grandi’s paradox, which was posed for a real function of the form <span style="white-space:nowrap;">1/(1+ <em>x</em>)</span>, has been resolved and extended to complex valued functions. Resolution of this approximately three-hundred-year-old paradox is accomplished by the use of a consistent truncation approach that can be applied to all the series expansions of Grandi-type functions. Furthermore, a new technique for improving the convergence characteristics of power series with alternating signs is introduced. The technique works by successively averaging a series at different orders of truncation. A sound theoretical justification of the successive averaging method is demonstrated by two different series expansions of the function <span style="white-space:nowrap;">1/(1+ e<sup><em>x</em> </sup>)</span> . Grandi-type complex valued functions such as <span style="white-space:nowrap;">1/(<em>i</em> + <em>x</em>)</span> are expressed as consistently-truncated and convergence-improved forms and Fagnano’s formula is established from the series expansions of these functions. A Grandi-type general complex valued function <img src="Edit_f4efd7cd-6853-4ca4-b4dc-00f0b798c277.png" width="80" height="24" alt="" /> is introduced and expanded to a consistently truncated and successively averaged series. Finally, an unorthodox application of the successive averaging method to polynomials is presented.展开更多
The electromagnetic field that generated by line current and sheet current at the surface of the earth can be expressed in analytical form. The line current created at the earth’s surface by an infinitely long line c...The electromagnetic field that generated by line current and sheet current at the surface of the earth can be expressed in analytical form. The line current created at the earth’s surface by an infinitely long line current is given by the inverse Fourier integrals over a horizontal wave number. The sheet current can be obtained by integrating the line current expansions using a Neumann and Struve functions;these functions have known mathematical properties, including the series expansions. The series expansions are exact with neglecting the displacement currents. Assuming a uniform earth and that there is no propagation, the three nonzero field components can be expressed in terms of the Neumann and Struve functions. The integrals of line current expansions are calculated by using the numerical methods. The results represented graphically and illustrated by figures. Results can be used to evaluate numerical solutions of more complicated modeling algorithms.展开更多
In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a me...In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a mean-field and high temperature series expansion (HTSE) combined with Pade approximant calculations. The scaling law of magnetic susceptibility and magnetization is used to determine the critical exponent γ, veff (mean), ratio of the critical exponents γ/v, and magnetic properties of Ising and XY antiferromagnetic thin-films for different thickness layers n = 2, 3, 4, 5, 6, and bulk (∞).展开更多
In this paper, we presented an initial value approach for solving singularly perturbed two point boundary value problems with the boundary layer at one end (left or right). By employing asymptotic power series expansi...In this paper, we presented an initial value approach for solving singularly perturbed two point boundary value problems with the boundary layer at one end (left or right). By employing asymptotic power series expansion, the given singularly perturbed two-point boundary value problem is replaced by two first order initial value problems. To demonstrate the applicability of the present method three linear and two nonlinear problems with left end boundary layer are considered. It is observed that the present method approximates the exact solution very well.展开更多
The magnetic properties of (Cox Fe1-x)A (Zn1-x Fe1+x)B O4 are studied using mean-field theory and the probability distribution law to obtain the saturation magnetization, the coercive field, the critical temperat...The magnetic properties of (Cox Fe1-x)A (Zn1-x Fe1+x)B O4 are studied using mean-field theory and the probability distribution law to obtain the saturation magnetization, the coercive field, the critical temperature, and the exchange interactions with different values of D (nm) and x. High-temperature series expansions (HTSEs) combined with the Pade approximant are used to calculate the critical temperature of (CoxFe1-x)A(Znl-xFe1+x)BO4, and the critical exponent associated with magnetic susceptibility is obtained.展开更多
根据Ruehli的PEEC(Partial Element Equivalent Circuit)模型[5],矩形截面互连线(Interconnect)的部分电感定义为一个六重积分解析式,由于使用该式计算自感时,被积函数会存在奇异点,因此需要研究准确简便的自感计算方法。文中首次使用...根据Ruehli的PEEC(Partial Element Equivalent Circuit)模型[5],矩形截面互连线(Interconnect)的部分电感定义为一个六重积分解析式,由于使用该式计算自感时,被积函数会存在奇异点,因此需要研究准确简便的自感计算方法。文中首次使用泰勒级数展开法计算得到了矩形互连线自感公式。该方法从自感公式出发,先计算二重解析积分,然后把被积函数中的复杂函数展开成泰勒级数,从而转化为幂级数的逐项积分,推得自感计算公式是以导体尺寸为变量的简单显式函数。计算结果表明,该公式与直接积分方法具有同样的计算精度,并且比其它自感计算公式更加准确有效。展开更多
文摘Grandi’s paradox, which was posed for a real function of the form <span style="white-space:nowrap;">1/(1+ <em>x</em>)</span>, has been resolved and extended to complex valued functions. Resolution of this approximately three-hundred-year-old paradox is accomplished by the use of a consistent truncation approach that can be applied to all the series expansions of Grandi-type functions. Furthermore, a new technique for improving the convergence characteristics of power series with alternating signs is introduced. The technique works by successively averaging a series at different orders of truncation. A sound theoretical justification of the successive averaging method is demonstrated by two different series expansions of the function <span style="white-space:nowrap;">1/(1+ e<sup><em>x</em> </sup>)</span> . Grandi-type complex valued functions such as <span style="white-space:nowrap;">1/(<em>i</em> + <em>x</em>)</span> are expressed as consistently-truncated and convergence-improved forms and Fagnano’s formula is established from the series expansions of these functions. A Grandi-type general complex valued function <img src="Edit_f4efd7cd-6853-4ca4-b4dc-00f0b798c277.png" width="80" height="24" alt="" /> is introduced and expanded to a consistently truncated and successively averaged series. Finally, an unorthodox application of the successive averaging method to polynomials is presented.
文摘The electromagnetic field that generated by line current and sheet current at the surface of the earth can be expressed in analytical form. The line current created at the earth’s surface by an infinitely long line current is given by the inverse Fourier integrals over a horizontal wave number. The sheet current can be obtained by integrating the line current expansions using a Neumann and Struve functions;these functions have known mathematical properties, including the series expansions. The series expansions are exact with neglecting the displacement currents. Assuming a uniform earth and that there is no propagation, the three nonzero field components can be expressed in terms of the Neumann and Struve functions. The integrals of line current expansions are calculated by using the numerical methods. The results represented graphically and illustrated by figures. Results can be used to evaluate numerical solutions of more complicated modeling algorithms.
文摘In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a mean-field and high temperature series expansion (HTSE) combined with Pade approximant calculations. The scaling law of magnetic susceptibility and magnetization is used to determine the critical exponent γ, veff (mean), ratio of the critical exponents γ/v, and magnetic properties of Ising and XY antiferromagnetic thin-films for different thickness layers n = 2, 3, 4, 5, 6, and bulk (∞).
文摘In this paper, we presented an initial value approach for solving singularly perturbed two point boundary value problems with the boundary layer at one end (left or right). By employing asymptotic power series expansion, the given singularly perturbed two-point boundary value problem is replaced by two first order initial value problems. To demonstrate the applicability of the present method three linear and two nonlinear problems with left end boundary layer are considered. It is observed that the present method approximates the exact solution very well.
文摘The magnetic properties of (Cox Fe1-x)A (Zn1-x Fe1+x)B O4 are studied using mean-field theory and the probability distribution law to obtain the saturation magnetization, the coercive field, the critical temperature, and the exchange interactions with different values of D (nm) and x. High-temperature series expansions (HTSEs) combined with the Pade approximant are used to calculate the critical temperature of (CoxFe1-x)A(Znl-xFe1+x)BO4, and the critical exponent associated with magnetic susceptibility is obtained.
文摘根据Ruehli的PEEC(Partial Element Equivalent Circuit)模型[5],矩形截面互连线(Interconnect)的部分电感定义为一个六重积分解析式,由于使用该式计算自感时,被积函数会存在奇异点,因此需要研究准确简便的自感计算方法。文中首次使用泰勒级数展开法计算得到了矩形互连线自感公式。该方法从自感公式出发,先计算二重解析积分,然后把被积函数中的复杂函数展开成泰勒级数,从而转化为幂级数的逐项积分,推得自感计算公式是以导体尺寸为变量的简单显式函数。计算结果表明,该公式与直接积分方法具有同样的计算精度,并且比其它自感计算公式更加准确有效。