针对姿态多变化的飞机自动目标识别中的低识别率问题,提出了一种基于DSm T(Dezert-Smarandache theory)与隐马尔可夫模型(Hidden Markov model,HMM)的飞机多特征序列信息融合识别算法(Multiple features and sequential information fus...针对姿态多变化的飞机自动目标识别中的低识别率问题,提出了一种基于DSm T(Dezert-Smarandache theory)与隐马尔可夫模型(Hidden Markov model,HMM)的飞机多特征序列信息融合识别算法(Multiple features and sequential information fusion,MFSIF).其创新性在于将单幅图像的多特征信息融合识别和序列图像信息融合识别进行有机结合.首先,对图像进行二值化预处理,并提取目标的Hu矩和轮廓局部奇异值特征;然后,利用概率神经网络(Probabilistic neural networks,PNN)构造基本信度赋值(Basic belief assignment,BBA);接着,利用DSm T对该图像的不同特征进行融合,从而获得HMM的观察值序列;再接着,利用隐马尔可夫模型对飞机序列信息融合,计算观察值序列与各隐马尔可夫模型之间的相似度,从而实现姿态多变化的飞机目标自动识别;最后,通过仿真实验,验证了该算法在飞机姿态发生较大变化时,依然可以获得较高的正确识别率,同时在实时性方面也可以满足飞机目标识别的要求.另外,在飞机序列发生连续遮挡帧数τ≤6的情况下,也具有较高的飞机目标正确识别率.展开更多
文摘针对姿态多变化的飞机自动目标识别中的低识别率问题,提出了一种基于DSm T(Dezert-Smarandache theory)与隐马尔可夫模型(Hidden Markov model,HMM)的飞机多特征序列信息融合识别算法(Multiple features and sequential information fusion,MFSIF).其创新性在于将单幅图像的多特征信息融合识别和序列图像信息融合识别进行有机结合.首先,对图像进行二值化预处理,并提取目标的Hu矩和轮廓局部奇异值特征;然后,利用概率神经网络(Probabilistic neural networks,PNN)构造基本信度赋值(Basic belief assignment,BBA);接着,利用DSm T对该图像的不同特征进行融合,从而获得HMM的观察值序列;再接着,利用隐马尔可夫模型对飞机序列信息融合,计算观察值序列与各隐马尔可夫模型之间的相似度,从而实现姿态多变化的飞机目标自动识别;最后,通过仿真实验,验证了该算法在飞机姿态发生较大变化时,依然可以获得较高的正确识别率,同时在实时性方面也可以满足飞机目标识别的要求.另外,在飞机序列发生连续遮挡帧数τ≤6的情况下,也具有较高的飞机目标正确识别率.
文摘目的基于深度模型的跟踪算法往往需要大规模的高质量标注训练数据集,而人工逐帧标注视频数据会耗费大量的人力及时间成本。本文提出一个基于Transformer模型的轻量化视频标注算法(Transformer-based label network,TLNet),实现对大规模稀疏标注视频数据集的高效逐帧标注。方法该算法通过Transformer模型来处理时序的目标外观和运动信息,并融合前反向的跟踪结果。其中质量评估子网络用于筛选跟踪失败帧,进行人工标注;回归子网络则对剩余帧的初始标注进行优化,输出更精确的目标框标注。该算法具有强泛化性,能够与具体跟踪算法解耦,应用现有的任意轻量化跟踪算法,实现高效的视频自动标注。结果在2个大规模跟踪数据集上生成标注。对于LaSOT(large-scale single object tracking)数据集,自动标注过程仅需约43 h,与真实标注的平均重叠率(mean intersection over union,mIoU)由0.824提升至0.871。对于TrackingNet数据集,本文使用自动标注重新训练3种跟踪算法,并在3个数据集上测试跟踪性能,使用本文标注训练的模型在跟踪性能上超过使用TrackingNet原始标注训练的模型。结论本文算法TLNet能够挖掘时序的目标外观和运动信息,对前反向跟踪结果进行帧级的质量评估并进一步优化目标框。该方法与具体跟踪算法解耦,具有强泛化性,并能节省超过90%的人工标注成本,高效地生成高质量的视频标注。