期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合时序动态图和双流卷积网络的人体行为识别 被引量:3
1
作者 张文强 王增强 张良 《激光与光电子学进展》 CSCD 北大核心 2021年第2期96-104,共9页
为了更好地对人体动作的长时时域信息进行建模,提出了一种结合时序动态图和双流卷积网络的人体行为识别算法。首先,利用双向顺序池化算法来构建时序动态图,实现视频从三维空间到二维空间的映射,用来提取动作的表观和长时时序信息;然后... 为了更好地对人体动作的长时时域信息进行建模,提出了一种结合时序动态图和双流卷积网络的人体行为识别算法。首先,利用双向顺序池化算法来构建时序动态图,实现视频从三维空间到二维空间的映射,用来提取动作的表观和长时时序信息;然后提出了基于inceptionV3的双流卷积网络,包含表观及长时运动流和短时运动流,分别以时序动态图和堆叠的光流帧序列作为输入,且结合数据增强、模态预训练、稀疏采样等方式;最后将各支流输出的类别判定分数通过平均池化的方式进行分数融合。在UCF101和HMDB51数据集的实验结果表明:与传统双流卷积网络相比,该方法可以有效利用动作的时空信息,识别率得到较大的提升,具有有效性和鲁棒性。 展开更多
关键词 图像处理 双流卷积网络 人体行为识别 时序动态图 数据增强
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部