This paper analyzed the fundamental limitations of previous work and developed a new method to optimally locate actuators and sensors for structures with close modes. Optimization criteria were defined based on the di...This paper analyzed the fundamental limitations of previous work and developed a new method to optimally locate actuators and sensors for structures with close modes. Optimization criteria were defined based on the distinguishing modal controllability and observability measures of close modes. An appropriate genetic algorism was adopted as the optimization algorism. Solving the high order Lyapunov functions was avoided by means of the closed-form expressions for controllability and observability Grammians. Since structure with widely separated natural frequencies is approximately balanced, computational efficiency was improved by grouping close modes together and dealing with the resulting subsystems independently. Finally, the effectiveness and optimality of the novel placement scheme were verified on a model structure with close modes.展开更多
Wireless sensor-actuator networks can bring flexibility to smart home.We design and develop a smart home prototype using wireless sensor-actuator network technology to realize environmental sensing and the control of ...Wireless sensor-actuator networks can bring flexibility to smart home.We design and develop a smart home prototype using wireless sensor-actuator network technology to realize environmental sensing and the control of electric appliances.The basic motivation of our solution is to utilize the collaboration among a mass of low-cost sensor nodes and actuator nodes to make life convenient.To achieve it,we design a novel system architecture with assembled component modules.In particular,we address some key technical challenges:1) Field-Programmable Gate Array (FPGA) Implementation of Adaptive Differential Pulse Code Modulation (ADPCM) for audio data;2) FPGA Implementation of Lempel Ziv Storer Szymanski (LZSS) for bulk data;3) combination of complex control logic.Finally,a set of experiments are presented to evaluate the performance of our solution.展开更多
For the problem posed by closely spaced modes, this paper defined the MCC (modal correlation criterion) to measure the degree of correlation between close modes. It was proved that structures with certain features ten...For the problem posed by closely spaced modes, this paper defined the MCC (modal correlation criterion) to measure the degree of correlation between close modes. It was proved that structures with certain features tend to have closely clustered modes and the corresponding mode shapes highly correlated. With this understanding, the closed-form expressions for controllability and observability Grammians were adopted to analyze the impacts of actuator/sensor placement on the controllability/observability of highly correlated close modes. On this basis, the problem of actuator/sensor placement, when the optimization criterion is based on modal controllability/observability, was simplified. Moreover, the dimension of the control/measurement vector in independent modal space control for highly correlated close modes was proved to have the potential to be reduced, therefore fewer actuators and sensors were required in this dimension-reduced control strategy. Finally, the desirable vibration suppression for an example structure showed that the theory and methods of this paper were accurate and effective.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10872028)
文摘This paper analyzed the fundamental limitations of previous work and developed a new method to optimally locate actuators and sensors for structures with close modes. Optimization criteria were defined based on the distinguishing modal controllability and observability measures of close modes. An appropriate genetic algorism was adopted as the optimization algorism. Solving the high order Lyapunov functions was avoided by means of the closed-form expressions for controllability and observability Grammians. Since structure with widely separated natural frequencies is approximately balanced, computational efficiency was improved by grouping close modes together and dealing with the resulting subsystems independently. Finally, the effectiveness and optimality of the novel placement scheme were verified on a model structure with close modes.
基金supported by the Natural Science Foundation of China under Grant No.61070206,No.61070205and No.60833009the National973Project of China under Grant No.2011CB302701+2 种基金the program of New Century Excellent Talents in University of China under Grant No.NCET-080737the Beijing National Natural Science Foundation under Grant No.4092030the Cosponsored Project of Beijing Committee of Education
文摘Wireless sensor-actuator networks can bring flexibility to smart home.We design and develop a smart home prototype using wireless sensor-actuator network technology to realize environmental sensing and the control of electric appliances.The basic motivation of our solution is to utilize the collaboration among a mass of low-cost sensor nodes and actuator nodes to make life convenient.To achieve it,we design a novel system architecture with assembled component modules.In particular,we address some key technical challenges:1) Field-Programmable Gate Array (FPGA) Implementation of Adaptive Differential Pulse Code Modulation (ADPCM) for audio data;2) FPGA Implementation of Lempel Ziv Storer Szymanski (LZSS) for bulk data;3) combination of complex control logic.Finally,a set of experiments are presented to evaluate the performance of our solution.
基金supported by the National Natural Science Foundation of China (Grant No. 10872028)
文摘For the problem posed by closely spaced modes, this paper defined the MCC (modal correlation criterion) to measure the degree of correlation between close modes. It was proved that structures with certain features tend to have closely clustered modes and the corresponding mode shapes highly correlated. With this understanding, the closed-form expressions for controllability and observability Grammians were adopted to analyze the impacts of actuator/sensor placement on the controllability/observability of highly correlated close modes. On this basis, the problem of actuator/sensor placement, when the optimization criterion is based on modal controllability/observability, was simplified. Moreover, the dimension of the control/measurement vector in independent modal space control for highly correlated close modes was proved to have the potential to be reduced, therefore fewer actuators and sensors were required in this dimension-reduced control strategy. Finally, the desirable vibration suppression for an example structure showed that the theory and methods of this paper were accurate and effective.