The vertically integrated emission rate,centroid altitude,peak emission rate,and peak height of the hydroxyl(OH)airglow were calculated from Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)/Sounding o...The vertically integrated emission rate,centroid altitude,peak emission rate,and peak height of the hydroxyl(OH)airglow were calculated from Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)observations to study the seasonal and interannual variations in the intensity and location of the OH emission.The emission rate is inversely proportional to the height of the emission,with the semiannual oscillation dominating at low latitudes and the annual oscillation dominating at higher latitudes.The OH emission is modulated by the quasibiennial oscillation at the equator,and the quasibiennial oscillation signal is weak at other latitudes.We represented the vertical transport of atomic oxygen by using atomic oxygen concentrations obtained from a global atmospheric model,the Specified Dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension simulations.Compared with the amplitudes of the migrating diurnal tide(DW1)calculated from temperature data observed by TIMED/SABER,we found that both the vertical transport of atomic oxygen and DW1 amplitudes in the equatorial region exhibit semiannual oscillation and quasibiennial oscillation,which have a strong correlation with the variations in the amplitude and phase of semiannual oscillation and quasibiennial oscillation in OH emission.It is likely that the DW1 affects the vertical transport of atomic oxygen that is involved in the reaction to produce O3,thus affecting the OH emission.We analyzed the relationship between OH emission and solar activity by using the solar radio flux at 10.7 cm as a proxy for solar activity.The results showed that the OH emission is well correlated with solar activity,and the modulation of OH emission by solar activity has a significant latitudinal variation.The small correlation between emission height and solar activity indicates that solar activity modulates OH emission mainly through chemical rather than dynamic processes.展开更多
The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband ...The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument from 2002 to 2018.At low latitudes,a layer with enhanced N2 occurs at an altitude of^20 km and exhibits annual oscillations caused by tropopause inversion layers.Above an altitude of^70 km,enhanced N2 exhibits semiannual oscillations at low latitudes caused by the mesosphere inversion layers and annual oscillations at high latitudes resulting from the downward shift of the summer mesopause.The correlation coefficients between N2 and GW amplitudes can be larger than 0.8 at latitudes poleward of^40°N/S.This observation provides factual evidence that a large N2 supports large-amplitude GWs and indicates that N2 plays a dominant role in maintaining GWs at least at high latitudes of the middle atmosphere.This evidence also partially explains the previous results regarding the phase changes of annual oscillations of GWs at high latitudes.展开更多
The variability of the air-sea system in the low-frequency time domain can be decomposed into several systematic climate modes, namely, the decadal variability (DV) mode, the El Nino Southem Oscillation (ENSO) mod...The variability of the air-sea system in the low-frequency time domain can be decomposed into several systematic climate modes, namely, the decadal variability (DV) mode, the El Nino Southem Oscillation (ENSO) mode, the annual cycle (AC) mode, the semiannual cycle ( SC ) mode and the intraseasonal variability ( ISV ) mode. The combination of these primary modes in the air - sea system orchestrates a complex climate system. The multi-mode low-frequency variability in SST is investigated based on 22 a SST records from 1982 through 2003. The variation of SST in the past two decades undergoes a different combination of these dominant climate modes over different regions, which leads to an interesting new classification of the global ocean based on the relative importance of these modes. The new classification can provide ideal locations for better monitoring of these low-frequency modes in the scientific proof sense. Moreover, two no-annual variation and 14 no-semiannual variation oceanic points, termed annual and semiannual amphidromes, have been well defined in the AC and SC phase maps. The formation of these nodal points is attributed to the couplings of climate modes in EOF analysis results.展开更多
The monthly means of north component X of geomagnetic field from 16 observatories during 1984-1988 were analyzed using the Sompi spectral analysis technique. Most of these observatories are located in China. The analy...The monthly means of north component X of geomagnetic field from 16 observatories during 1984-1988 were analyzed using the Sompi spectral analysis technique. Most of these observatories are located in China. The analysis of the semiannual variations indicates that the latitude has no apparent effect on the X component. This clearly implies that the source field mode of semiannual variations cannot simply be described by using the P°1 mode. Using the P°1 mode to estimate the inductive scale length C in the semiannual period, the value of C at each observatory would be biased significantly. The purpose of this study is to find which kind of modes is optimal for estimating the values of C corresponding to the semiannual variations. The results show that a composite mode, involving five terms P°n(n = 1,....,5), might be a reasonable and acceptable one.展开更多
Earth’s aurora is a luminescent phenomenon generated by the interaction between magnetospheric precipitating particles and the upper atmosphere;it plays an important role in magnetosphere–ionosphere(M-I)coupling.The...Earth’s aurora is a luminescent phenomenon generated by the interaction between magnetospheric precipitating particles and the upper atmosphere;it plays an important role in magnetosphere–ionosphere(M-I)coupling.The transpolar arc(TPA)is a discrete auroral arc distributed in the noon-midnight direction poleward of the auroral oval and connects the dayside to the nightside sectors of the auroral oval.Studying the seasonal variation of TPA events can help us better understand the long-term variation of the interaction between the solar wind,the magnetosphere,and M-I coupling.However,a statistical study of the seasonal variation of TPA incidence has not previously been carried out.In this paper,we have identified 532 TPA events from the IMAGE database(2000–2005)and the Polar database(1996–2002),and calculated the incidence of TPA events for different months.We find a semiannual variation in TPA incidence.Clear peaks in the incidence of TPAs occur in March and September;a less pronounced peak appears in November.We also examine seasonal variation in the northward interplanetary magnetic field(IMF)over the same time period.The intensity and occurrence rate of the northward IMF exhibit patterns similar to that of the TPA incidence.Having studied IMF Bz before TPA onset,we find that strong and steady northward IMF conditions are favorable for TPA formation.We suggest that the semiannual variation observed in TPA incidence may be related to the Russell–McPherron(R-M)effect due to the projection effect of the IMF By under northward IMF conditions.展开更多
Impacts of the Indonesian Throughflow(ITF) on seasonal circulation in the equatorial eastern Indian Ocean are investigated using the ocean-only model LICOM by opening and closing ITF passages. LICOM had daily forcing ...Impacts of the Indonesian Throughflow(ITF) on seasonal circulation in the equatorial eastern Indian Ocean are investigated using the ocean-only model LICOM by opening and closing ITF passages. LICOM had daily forcing from NCEP reanalysis data during 2000–2011. It can reproduce vertical profiles of mean density and buoyancy frequency of World Ocean Atlas 2013 data. The model also simulates well annual oscillation in the central Indian Ocean and semiannual oscillation in the eastern Indian Ocean of sea level anomalies(SLA) using satellite altimeter data, as well as the semiannual oscillation of surface zonal equatorial currents of Ocean Surface Current Analyses Real Time current data in the equatorial Indian Ocean. The wave decomposition method is used to analyze the propagation and reflection of equatorial long waves based on LICOM output. Wave analysis suggests that ITF blockage mainly influences waves generated from the Indian Ocean but not the Pacific Ocean, and eastern boundary reflections play an important role in semiannual oscillations of SLA and zonal current dif ferences in the equatorial Indian Ocean associated with ITF. Reconstructed ITF-caused SLA using wave decomposition coefficient dif ferences between closed and open ITF-passage experiments suggest both Kelvin and Rossby waves from the first baroclinic mode have comparable contributions to the semiannual oscillations of SLA diff erence. However, reconstructed ITFcaused surface zonal currents at the equator suggest that the first meridional-mode Rossby wave has much greater contribution than the first baroclinic mode Kelvin wave. Both reconstructed sea level and zonal currents demonstrate that the first baroclinic mode has a greater contribution than other baroclinic modes.展开更多
基金the National Natural Science Foundation of China(Grant Numbers 42374195 and 42188101)a fellowship from the China National Postdoctoral Program for Innovative Talents(Grant Number BX20230273).
文摘The vertically integrated emission rate,centroid altitude,peak emission rate,and peak height of the hydroxyl(OH)airglow were calculated from Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)observations to study the seasonal and interannual variations in the intensity and location of the OH emission.The emission rate is inversely proportional to the height of the emission,with the semiannual oscillation dominating at low latitudes and the annual oscillation dominating at higher latitudes.The OH emission is modulated by the quasibiennial oscillation at the equator,and the quasibiennial oscillation signal is weak at other latitudes.We represented the vertical transport of atomic oxygen by using atomic oxygen concentrations obtained from a global atmospheric model,the Specified Dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension simulations.Compared with the amplitudes of the migrating diurnal tide(DW1)calculated from temperature data observed by TIMED/SABER,we found that both the vertical transport of atomic oxygen and DW1 amplitudes in the equatorial region exhibit semiannual oscillation and quasibiennial oscillation,which have a strong correlation with the variations in the amplitude and phase of semiannual oscillation and quasibiennial oscillation in OH emission.It is likely that the DW1 affects the vertical transport of atomic oxygen that is involved in the reaction to produce O3,thus affecting the OH emission.We analyzed the relationship between OH emission and solar activity by using the solar radio flux at 10.7 cm as a proxy for solar activity.The results showed that the OH emission is well correlated with solar activity,and the modulation of OH emission by solar activity has a significant latitudinal variation.The small correlation between emission height and solar activity indicates that solar activity modulates OH emission mainly through chemical rather than dynamic processes.
基金This work was supported by the National Natural Science Foundation of China(grants 41831073 and 41874182).
文摘The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument from 2002 to 2018.At low latitudes,a layer with enhanced N2 occurs at an altitude of^20 km and exhibits annual oscillations caused by tropopause inversion layers.Above an altitude of^70 km,enhanced N2 exhibits semiannual oscillations at low latitudes caused by the mesosphere inversion layers and annual oscillations at high latitudes resulting from the downward shift of the summer mesopause.The correlation coefficients between N2 and GW amplitudes can be larger than 0.8 at latitudes poleward of^40°N/S.This observation provides factual evidence that a large N2 supports large-amplitude GWs and indicates that N2 plays a dominant role in maintaining GWs at least at high latitudes of the middle atmosphere.This evidence also partially explains the previous results regarding the phase changes of annual oscillations of GWs at high latitudes.
基金This research was jointly supported by the National Basic Research Program of China under contract N0.2005CB422308the National Natural Science Foundation of China under Contract N0.40545018the National Key laboratory of Remote Sensing Sciences.
文摘The variability of the air-sea system in the low-frequency time domain can be decomposed into several systematic climate modes, namely, the decadal variability (DV) mode, the El Nino Southem Oscillation (ENSO) mode, the annual cycle (AC) mode, the semiannual cycle ( SC ) mode and the intraseasonal variability ( ISV ) mode. The combination of these primary modes in the air - sea system orchestrates a complex climate system. The multi-mode low-frequency variability in SST is investigated based on 22 a SST records from 1982 through 2003. The variation of SST in the past two decades undergoes a different combination of these dominant climate modes over different regions, which leads to an interesting new classification of the global ocean based on the relative importance of these modes. The new classification can provide ideal locations for better monitoring of these low-frequency modes in the scientific proof sense. Moreover, two no-annual variation and 14 no-semiannual variation oceanic points, termed annual and semiannual amphidromes, have been well defined in the AC and SC phase maps. The formation of these nodal points is attributed to the couplings of climate modes in EOF analysis results.
文摘The monthly means of north component X of geomagnetic field from 16 observatories during 1984-1988 were analyzed using the Sompi spectral analysis technique. Most of these observatories are located in China. The analysis of the semiannual variations indicates that the latitude has no apparent effect on the X component. This clearly implies that the source field mode of semiannual variations cannot simply be described by using the P°1 mode. Using the P°1 mode to estimate the inductive scale length C in the semiannual period, the value of C at each observatory would be biased significantly. The purpose of this study is to find which kind of modes is optimal for estimating the values of C corresponding to the semiannual variations. The results show that a composite mode, involving five terms P°n(n = 1,....,5), might be a reasonable and acceptable one.
基金We acknowledge use of OMNI data obtained from the OMNIWeb service at http://omniweb.gsfc.nasa.gov.We thank the Polar UVI team for providing UV images.The IMAGE FUV data were provided by the NASA Space Science Data Center(NSSDC)This work was supported by the National Natural Science Foundation of China(Grants 41961130382,41731068 and 41941001)+1 种基金the Royal Society NAF\R1\191047,International Space Science Institute(ISSI)the young scholar plan of Shandong University at Weihai(2017WHWLJH08).
文摘Earth’s aurora is a luminescent phenomenon generated by the interaction between magnetospheric precipitating particles and the upper atmosphere;it plays an important role in magnetosphere–ionosphere(M-I)coupling.The transpolar arc(TPA)is a discrete auroral arc distributed in the noon-midnight direction poleward of the auroral oval and connects the dayside to the nightside sectors of the auroral oval.Studying the seasonal variation of TPA events can help us better understand the long-term variation of the interaction between the solar wind,the magnetosphere,and M-I coupling.However,a statistical study of the seasonal variation of TPA incidence has not previously been carried out.In this paper,we have identified 532 TPA events from the IMAGE database(2000–2005)and the Polar database(1996–2002),and calculated the incidence of TPA events for different months.We find a semiannual variation in TPA incidence.Clear peaks in the incidence of TPAs occur in March and September;a less pronounced peak appears in November.We also examine seasonal variation in the northward interplanetary magnetic field(IMF)over the same time period.The intensity and occurrence rate of the northward IMF exhibit patterns similar to that of the TPA incidence.Having studied IMF Bz before TPA onset,we find that strong and steady northward IMF conditions are favorable for TPA formation.We suggest that the semiannual variation observed in TPA incidence may be related to the Russell–McPherron(R-M)effect due to the projection effect of the IMF By under northward IMF conditions.
基金Supported by the National Natural Science Foundation of China(No.41206018)the National Natural Science Foundation of China(Nos.41176019,41421005,U1406401)+4 种基金the Chinese Academy of Sciences(No.XDA11010203)to WANG Jingthe Chinese Academy of Sciences(No.XDA11010301)the National Basic Research Program of China(973 Program)(No.2012CB956001)the Specialized Scientific Research Project for Public Welfare Industries(Meteorology)(No.GYHY201306018)the State Oceanic Administration of China(No.GASI-03-01-01-05)to YUAN Dongliang
文摘Impacts of the Indonesian Throughflow(ITF) on seasonal circulation in the equatorial eastern Indian Ocean are investigated using the ocean-only model LICOM by opening and closing ITF passages. LICOM had daily forcing from NCEP reanalysis data during 2000–2011. It can reproduce vertical profiles of mean density and buoyancy frequency of World Ocean Atlas 2013 data. The model also simulates well annual oscillation in the central Indian Ocean and semiannual oscillation in the eastern Indian Ocean of sea level anomalies(SLA) using satellite altimeter data, as well as the semiannual oscillation of surface zonal equatorial currents of Ocean Surface Current Analyses Real Time current data in the equatorial Indian Ocean. The wave decomposition method is used to analyze the propagation and reflection of equatorial long waves based on LICOM output. Wave analysis suggests that ITF blockage mainly influences waves generated from the Indian Ocean but not the Pacific Ocean, and eastern boundary reflections play an important role in semiannual oscillations of SLA and zonal current dif ferences in the equatorial Indian Ocean associated with ITF. Reconstructed ITF-caused SLA using wave decomposition coefficient dif ferences between closed and open ITF-passage experiments suggest both Kelvin and Rossby waves from the first baroclinic mode have comparable contributions to the semiannual oscillations of SLA diff erence. However, reconstructed ITFcaused surface zonal currents at the equator suggest that the first meridional-mode Rossby wave has much greater contribution than the first baroclinic mode Kelvin wave. Both reconstructed sea level and zonal currents demonstrate that the first baroclinic mode has a greater contribution than other baroclinic modes.