Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow ...Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow syntactic parsing as the foundation, phrases or named entities as the labeled units, and the CRFs model is trained to label the predicates' semantic roles in a sentence. The key of the method is parameter estimation and feature selection for the CRFs model. The L-BFGS algorithm was employed for parameter estimation, and three category features: features based on sentence constituents, features based on predicate, and predicate-constituent features as a set of features for the model were selected. Evaluation on the datasets of CoNLL-2005 SRL shared task shows that the method can obtain better performance than the maximum entropy model, and can achieve 80. 43 % precision and 63. 55 % recall for semantic role labeling.展开更多
A document layout can be more informative than merely a document’s visual and structural appearance.Thus,document layout analysis(DLA)is considered a necessary prerequisite for advanced processing and detailed docume...A document layout can be more informative than merely a document’s visual and structural appearance.Thus,document layout analysis(DLA)is considered a necessary prerequisite for advanced processing and detailed document image analysis to be further used in several applications and different objectives.This research extends the traditional approaches of DLA and introduces the concept of semantic document layout analysis(SDLA)by proposing a novel framework for semantic layout analysis and characterization of handwritten manuscripts.The proposed SDLA approach enables the derivation of implicit information and semantic characteristics,which can be effectively utilized in dozens of practical applications for various purposes,in a way bridging the semantic gap and providingmore understandable high-level document image analysis and more invariant characterization via absolute and relative labeling.This approach is validated and evaluated on a large dataset ofArabic handwrittenmanuscripts comprising complex layouts.The experimental work shows promising results in terms of accurate and effective semantic characteristic-based clustering and retrieval of handwritten manuscripts.It also indicates the expected efficacy of using the capabilities of the proposed approach in automating and facilitating many functional,reallife tasks such as effort estimation and pricing of transcription or typing of such complex manuscripts.展开更多
With the rapid development of reality capture methods,such as laser scanning and oblique photogrammetry,point cloud data have become the third most important data source,after vector maps and imagery.Point cloud data ...With the rapid development of reality capture methods,such as laser scanning and oblique photogrammetry,point cloud data have become the third most important data source,after vector maps and imagery.Point cloud data also play an increasingly important role in scientific research and engineering in the fields of Earth science,spatial cognition,and smart cities.However,how to acquire high-quality three-dimensional(3D)geospatial information from point clouds has become a scientific frontier,for which there is an urgent demand in the fields of surveying and mapping,as well as geoscience applications.To address the challenges mentioned above,point cloud intelligence came into being.This paper summarizes the state-of-the-art of point cloud intelligence,with regard to acquisition equipment,intelligent processing,scientific research,and engineering applications.For this purpose,we refer to a recent project on the hybrid georeferencing of images and LiDAR data for high-quality point cloud collection,as well as a current benchmark for the semantic segmentation of high-resolution 3D point clouds.These projects were conducted at the Institute for Photogrammetry,the University of Stuttgart,which was initially headed by the late Prof.Ackermann.Finally,the development prospects of point cloud intelligence are summarized.展开更多
An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stage...An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stages: geographic reconstruction, geometrical reconstruction and semantic reconstruction. The absolute position and orientation of all the cameras relative to the real world are recovered in the geographic reconstruction stage. Then, in the geometrical reconstruction stage,an improved multi-view stereo matching method is employed to produce 3D dense points with color and normal information by taking into account the prior knowledge of aerial imagery.Finally the point cloud is classified into three classes(building,vegetation, and ground) by a rule-based hierarchical approach in the semantic reconstruction step. Experiments on complex urban scene show that our proposed 3-stage approach could generate reasonable reconstruction result robustly and efficiently.By comparing our final semantic reconstruction result with the manually labeled ground truth, classification accuracies from86.75% to 93.02% are obtained.展开更多
This letter presents an efficient and simple image segmentation method for semantic object spatial segmentation. First, the image is filtered using contour-preserving filters. Then it is quasi-flat labeled. The small ...This letter presents an efficient and simple image segmentation method for semantic object spatial segmentation. First, the image is filtered using contour-preserving filters. Then it is quasi-flat labeled. The small regions near the contour are classified as uncertain regions and are eliminated by region growing and merging. Further region merging is used to reduce the region number. The simulation results show its efficiency and simplicity. It can preserve the semantic object shape while emphasize on the perceptual complex part of the object. So it conforms to the human visual perception very well.展开更多
基金The National Natural Science Foundation of China(No60663004)the PhD Programs Foundation of Ministry of Educa-tion of China (No20050007023)
文摘Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow syntactic parsing as the foundation, phrases or named entities as the labeled units, and the CRFs model is trained to label the predicates' semantic roles in a sentence. The key of the method is parameter estimation and feature selection for the CRFs model. The L-BFGS algorithm was employed for parameter estimation, and three category features: features based on sentence constituents, features based on predicate, and predicate-constituent features as a set of features for the model were selected. Evaluation on the datasets of CoNLL-2005 SRL shared task shows that the method can obtain better performance than the maximum entropy model, and can achieve 80. 43 % precision and 63. 55 % recall for semantic role labeling.
基金This research was supported and funded by KAU Scientific Endowment,King Abdulaziz University,Jeddah,Saudi Arabia.
文摘A document layout can be more informative than merely a document’s visual and structural appearance.Thus,document layout analysis(DLA)is considered a necessary prerequisite for advanced processing and detailed document image analysis to be further used in several applications and different objectives.This research extends the traditional approaches of DLA and introduces the concept of semantic document layout analysis(SDLA)by proposing a novel framework for semantic layout analysis and characterization of handwritten manuscripts.The proposed SDLA approach enables the derivation of implicit information and semantic characteristics,which can be effectively utilized in dozens of practical applications for various purposes,in a way bridging the semantic gap and providingmore understandable high-level document image analysis and more invariant characterization via absolute and relative labeling.This approach is validated and evaluated on a large dataset ofArabic handwrittenmanuscripts comprising complex layouts.The experimental work shows promising results in terms of accurate and effective semantic characteristic-based clustering and retrieval of handwritten manuscripts.It also indicates the expected efficacy of using the capabilities of the proposed approach in automating and facilitating many functional,reallife tasks such as effort estimation and pricing of transcription or typing of such complex manuscripts.
基金supported by the National Natural Science Foundation Project(No.42130105)Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in_Megacities,MNR(No.KFKT-2022-01).
文摘With the rapid development of reality capture methods,such as laser scanning and oblique photogrammetry,point cloud data have become the third most important data source,after vector maps and imagery.Point cloud data also play an increasingly important role in scientific research and engineering in the fields of Earth science,spatial cognition,and smart cities.However,how to acquire high-quality three-dimensional(3D)geospatial information from point clouds has become a scientific frontier,for which there is an urgent demand in the fields of surveying and mapping,as well as geoscience applications.To address the challenges mentioned above,point cloud intelligence came into being.This paper summarizes the state-of-the-art of point cloud intelligence,with regard to acquisition equipment,intelligent processing,scientific research,and engineering applications.For this purpose,we refer to a recent project on the hybrid georeferencing of images and LiDAR data for high-quality point cloud collection,as well as a current benchmark for the semantic segmentation of high-resolution 3D point clouds.These projects were conducted at the Institute for Photogrammetry,the University of Stuttgart,which was initially headed by the late Prof.Ackermann.Finally,the development prospects of point cloud intelligence are summarized.
基金supported in part by the National Natural Science Foundation of China (61421004,61402316,61333015,61632003)Doctoral Research Fund of Taiyuan University of Science and Technology under grant (20162009)National Key Technologies R&D Program(2016YFB0502002)
文摘An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stages: geographic reconstruction, geometrical reconstruction and semantic reconstruction. The absolute position and orientation of all the cameras relative to the real world are recovered in the geographic reconstruction stage. Then, in the geometrical reconstruction stage,an improved multi-view stereo matching method is employed to produce 3D dense points with color and normal information by taking into account the prior knowledge of aerial imagery.Finally the point cloud is classified into three classes(building,vegetation, and ground) by a rule-based hierarchical approach in the semantic reconstruction step. Experiments on complex urban scene show that our proposed 3-stage approach could generate reasonable reconstruction result robustly and efficiently.By comparing our final semantic reconstruction result with the manually labeled ground truth, classification accuracies from86.75% to 93.02% are obtained.
基金Supported by Guangdong Natural Science Foundation(No.011628)
文摘This letter presents an efficient and simple image segmentation method for semantic object spatial segmentation. First, the image is filtered using contour-preserving filters. Then it is quasi-flat labeled. The small regions near the contour are classified as uncertain regions and are eliminated by region growing and merging. Further region merging is used to reduce the region number. The simulation results show its efficiency and simplicity. It can preserve the semantic object shape while emphasize on the perceptual complex part of the object. So it conforms to the human visual perception very well.