For the linear discrete time-invariant stochastic system with correlated noises, and with unknown model parameters and noise statistics, substituting the online consistent estimators of the model parameters and noise ...For the linear discrete time-invariant stochastic system with correlated noises, and with unknown model parameters and noise statistics, substituting the online consistent estimators of the model parameters and noise statistics into the optimal time-varying Riccati equation, a self-tuning Riccati equation is presented. By the dynamic variance error system analysis (DVESA) method, it is rigorously proved that the self-tuning Riccati equation converges to the optimal time-varying Riccati equation. Based on this, by the dynamic error system analysis (DESA) method, it is proved that the corresponding self-tuning Kalman filter converges to the optimal time-varying Kalman filter in a realization, so that it has asymptotic optimality. As an application to adaptive signal processing, a self-tuning Kalman signal filter with the self-tuning Riccati equation is presented. A simulation example shows the effectiveness.展开更多
For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorit...For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorithm,correlation method and least squares fusion criterion.Substituting these consistent estimators into the optimal weighted measurement fusion Kalman filter,a self-tuning weighted measurement fusion Kalman filter is presented.Using the dynamic error system analysis (DESA) method,the convergence of the self-tuning weighted measurement fusion Kalman filter is proved,i.e.,the self-tuning Kalman filter converges to the corresponding optimal Kalman filter in a realization.Therefore,the self-tuning weighted measurement fusion Kalman filter has asymptotic global optimality.One simulation example for a 4-sensor target tracking system verifies its effectiveness.展开更多
对于含未知模型参数和带未知噪声统计的一类雷达跟踪系统,本文用现代时间序列分析方法提出了一种新的自校正跟踪滤波器,其特点是基于 ARMA 新息模型的在线辨识,通过计算自校正输出预报器和自校正观测噪声滤波器,就可得到自校正跟踪滤波...对于含未知模型参数和带未知噪声统计的一类雷达跟踪系统,本文用现代时间序列分析方法提出了一种新的自校正跟踪滤波器,其特点是基于 ARMA 新息模型的在线辨识,通过计算自校正输出预报器和自校正观测噪声滤波器,就可得到自校正跟踪滤波器。仿真例子说明了其有效性。展开更多
基金supported by the National Natural Science Foundation of China (No. 60874063)the Automatic Control Key Laboratory of Heilongjiang Universitythe Science and Technology Research Foundation of Heilongjiang Education Department (No. 11553101)
文摘For the linear discrete time-invariant stochastic system with correlated noises, and with unknown model parameters and noise statistics, substituting the online consistent estimators of the model parameters and noise statistics into the optimal time-varying Riccati equation, a self-tuning Riccati equation is presented. By the dynamic variance error system analysis (DVESA) method, it is rigorously proved that the self-tuning Riccati equation converges to the optimal time-varying Riccati equation. Based on this, by the dynamic error system analysis (DESA) method, it is proved that the corresponding self-tuning Kalman filter converges to the optimal time-varying Kalman filter in a realization, so that it has asymptotic optimality. As an application to adaptive signal processing, a self-tuning Kalman signal filter with the self-tuning Riccati equation is presented. A simulation example shows the effectiveness.
基金supported by the National Natural Science Foundation of China(No.60874063)the Innovation Scientific Research Foundation for Graduate Students of Heilongjiang Province(No.YJSCX2008-018HLJ),and the Automatic Control Key Laboratory of Heilongjiang University
文摘For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorithm,correlation method and least squares fusion criterion.Substituting these consistent estimators into the optimal weighted measurement fusion Kalman filter,a self-tuning weighted measurement fusion Kalman filter is presented.Using the dynamic error system analysis (DESA) method,the convergence of the self-tuning weighted measurement fusion Kalman filter is proved,i.e.,the self-tuning Kalman filter converges to the corresponding optimal Kalman filter in a realization.Therefore,the self-tuning weighted measurement fusion Kalman filter has asymptotic global optimality.One simulation example for a 4-sensor target tracking system verifies its effectiveness.