A simple analysis is given for the optimum length of undulator in a self-seeding free electron laser (FEL). The obtained relations show the correlation between the undulator length and the system parameters. The pow...A simple analysis is given for the optimum length of undulator in a self-seeding free electron laser (FEL). The obtained relations show the correlation between the undulator length and the system parameters. The power required for the seeding in the second part of the undulator and the overall efficiency of monochromatizating the seeding determine the length of the first part of the undulator; the magnitude of seeding power dominates the length of the second part of the undulator; the whole length of the undulator in a self-seeding FEL is determined by the overall efficiency for getting coherent seed, and is about half as long again as that of SASE, not including the dispersion section. The requirement of the dispersion section strength is also analyzed.展开更多
In pursuit of a fully coherent X-ray free-electron laser(FEL), highly reflective Bragg crystals are used and will be used as a highly selective spectral filter in hard X-ray self-seeding FELs and X-ray FEL oscillators...In pursuit of a fully coherent X-ray free-electron laser(FEL), highly reflective Bragg crystals are used and will be used as a highly selective spectral filter in hard X-ray self-seeding FELs and X-ray FEL oscillators(XFELO), respectively. However, currently, when simulating self-seeding and XFELO, the three-dimensional effect of Bragg diffraction is not fully considered. In this paper, we derive a comprehensive solution for the response function of the crystal in Bragg diffraction. A three-dimensional X-ray crystal Bragg diffraction code, named BRIGHT, is introduced, which can be combined with other FEL-related codes, e.g., GENESIS and OPC. Performance and feasibility are assessed using two numerical examples,namely a self-seeding experiment for the linac coherent light source and XFELO options for Shanghai high repetition rate XFEL. The results indicate that BRIGHT provides a new and useful tool for three-dimensional modeling of FEL.展开更多
In the southern Great Plains (SGP) of the USA warm-season legumes can improve the quality of available forage in pasture systems based on perennial warm-season grasses. Legumes that persist through self-seeding may be...In the southern Great Plains (SGP) of the USA warm-season legumes can improve the quality of available forage in pasture systems based on perennial warm-season grasses. Legumes that persist through self-seeding may be especially useful in low-input systems where resources for annual replanting are limited. The productivity and capacity for self-seeding of Korean lespedeza (Kummerowia stipulacea [Maxim.] Makino) and Verano stylo (Stylosanthes hamata [L.] Taub.) were tested in controlled environment and in field plots in the SGP. At similar levels of accumulated temperature, germination of Korean lespedeza was unaffected by day/night temperature regimes between 15/15°C and 30/15°C. In contrast, at similar accumulated temperatures, germination of Verano stylo increased with higher daytime maximum temperature up to 30°C. Seedling growth of both species was reduced by shading, in proportion to the reduction in photosynthetic flux density. Growth of Korean lespedeza up to five weeks after emergence was greatest under a 22.5/7.5°C temperature regime but that of Verano stylo was greatest at 30/15°C. In the field Korean lespedeza was a prolific seeder and productive of forage though susceptible to significant loss of leaf material in late summer and fall. Verano stylo did not reseed effectively and was not a reliable forage producer.展开更多
We study a self-seeded high-gain harmonic generation(HGHG) free-electron laser(FEL) scheme to extend the wavelength of a soft X-ray FEL. This scheme uses a regular self-seeding monochromator to generate a seed las...We study a self-seeded high-gain harmonic generation(HGHG) free-electron laser(FEL) scheme to extend the wavelength of a soft X-ray FEL. This scheme uses a regular self-seeding monochromator to generate a seed laser at the wavelength of 1.52 nm, followed by a HGHG configuration to produce coherent, narrow-bandwidth harmonic radiations at the GW level. The 2nd and 3rd harmonic radiation is investigated with start-to-end simulations.Detailed studies of the FEL performance and shot-to-shot fluctuations are presented.展开更多
In order to meet the requirements of the synchrotron radiation users, a fully coherent VUV free electron laser (FEL) has been preliminarily designed. One important goal of this design is that the radiation wavelengt...In order to meet the requirements of the synchrotron radiation users, a fully coherent VUV free electron laser (FEL) has been preliminarily designed. One important goal of this design is that the radiation wavelength can be easily tuned in a broad range (70 170 nm). In the light of the users' demand and our actual conditions, the self-seeding scheme is adopted for this proposal. Firstly, we attempted to fix the electron energy and only changed the undulator gap to vary the radiation wavelength; however, our analysis implies that this is difficult because of the great difference of the power gain length and FEL efficiency at different wavelengths. Therefore, we have considered dividing the wavelength range into three subareas. In each subarea, a constant electron energy is used and the wavelength tuning is realized only by adjusting the undulator gap. The simulation results show that this scheme has an acceptable performance.展开更多
基金Supported by Major State Basic Research Development Program(2011CB808301)National Natural Science Foundation of China(11375199)
文摘A simple analysis is given for the optimum length of undulator in a self-seeding free electron laser (FEL). The obtained relations show the correlation between the undulator length and the system parameters. The power required for the seeding in the second part of the undulator and the overall efficiency of monochromatizating the seeding determine the length of the first part of the undulator; the magnitude of seeding power dominates the length of the second part of the undulator; the whole length of the undulator in a self-seeding FEL is determined by the overall efficiency for getting coherent seed, and is about half as long again as that of SASE, not including the dispersion section. The requirement of the dispersion section strength is also analyzed.
基金supported by the National Natural Science Foundation of China(No.11775293)the National Key Research and Development Program of China(No.2016YFA0401900)+1 种基金the Young Elite Scientist Sponsorship Program by CAST(No.2015QNRC001)Ten Thousand Talent Program
文摘In pursuit of a fully coherent X-ray free-electron laser(FEL), highly reflective Bragg crystals are used and will be used as a highly selective spectral filter in hard X-ray self-seeding FELs and X-ray FEL oscillators(XFELO), respectively. However, currently, when simulating self-seeding and XFELO, the three-dimensional effect of Bragg diffraction is not fully considered. In this paper, we derive a comprehensive solution for the response function of the crystal in Bragg diffraction. A three-dimensional X-ray crystal Bragg diffraction code, named BRIGHT, is introduced, which can be combined with other FEL-related codes, e.g., GENESIS and OPC. Performance and feasibility are assessed using two numerical examples,namely a self-seeding experiment for the linac coherent light source and XFELO options for Shanghai high repetition rate XFEL. The results indicate that BRIGHT provides a new and useful tool for three-dimensional modeling of FEL.
文摘In the southern Great Plains (SGP) of the USA warm-season legumes can improve the quality of available forage in pasture systems based on perennial warm-season grasses. Legumes that persist through self-seeding may be especially useful in low-input systems where resources for annual replanting are limited. The productivity and capacity for self-seeding of Korean lespedeza (Kummerowia stipulacea [Maxim.] Makino) and Verano stylo (Stylosanthes hamata [L.] Taub.) were tested in controlled environment and in field plots in the SGP. At similar levels of accumulated temperature, germination of Korean lespedeza was unaffected by day/night temperature regimes between 15/15°C and 30/15°C. In contrast, at similar accumulated temperatures, germination of Verano stylo increased with higher daytime maximum temperature up to 30°C. Seedling growth of both species was reduced by shading, in proportion to the reduction in photosynthetic flux density. Growth of Korean lespedeza up to five weeks after emergence was greatest under a 22.5/7.5°C temperature regime but that of Verano stylo was greatest at 30/15°C. In the field Korean lespedeza was a prolific seeder and productive of forage though susceptible to significant loss of leaf material in late summer and fall. Verano stylo did not reseed effectively and was not a reliable forage producer.
文摘We study a self-seeded high-gain harmonic generation(HGHG) free-electron laser(FEL) scheme to extend the wavelength of a soft X-ray FEL. This scheme uses a regular self-seeding monochromator to generate a seed laser at the wavelength of 1.52 nm, followed by a HGHG configuration to produce coherent, narrow-bandwidth harmonic radiations at the GW level. The 2nd and 3rd harmonic radiation is investigated with start-to-end simulations.Detailed studies of the FEL performance and shot-to-shot fluctuations are presented.
基金Supported by Major State Basic Research Development Program of China(2011CB808301)National Natural Science Foundation of China.(11205156)
文摘In order to meet the requirements of the synchrotron radiation users, a fully coherent VUV free electron laser (FEL) has been preliminarily designed. One important goal of this design is that the radiation wavelength can be easily tuned in a broad range (70 170 nm). In the light of the users' demand and our actual conditions, the self-seeding scheme is adopted for this proposal. Firstly, we attempted to fix the electron energy and only changed the undulator gap to vary the radiation wavelength; however, our analysis implies that this is difficult because of the great difference of the power gain length and FEL efficiency at different wavelengths. Therefore, we have considered dividing the wavelength range into three subareas. In each subarea, a constant electron energy is used and the wavelength tuning is realized only by adjusting the undulator gap. The simulation results show that this scheme has an acceptable performance.