In this research, Zr-doped Gd_2Ti_2O_7 pyrochlores, with the composition of Gd_2(Ti_(1-x)Zr_x)_2O_7, were firstly synthesized by self-propagating high-temperature synthesis plus quick pressing(SHS/QP) using CuO as the...In this research, Zr-doped Gd_2Ti_2O_7 pyrochlores, with the composition of Gd_2(Ti_(1-x)Zr_x)_2O_7, were firstly synthesized by self-propagating high-temperature synthesis plus quick pressing(SHS/QP) using CuO as the oxidant and Ti as the reductant. To improve the radiation resistance of titanate–pyrochlore, up to 35 at% Zr was incorporated to substitute the Ti site of Gd_2Ti_2O_7 pyrochlore(Gd_2(Ti_(0.75)Zr_(0.35))_2O_7). XRD and SEM microstructural characterizations showed the formation of a composite ceramic with the major pyrochlore phase and the minor Cu phase. The generated temperature of samples decreased from 1702to 1011 ℃ with increasing Zr content. The effects of sintering temperature and pressure time on phase composition and microstructure were systematically studied. Besides, the influence of thermal transmission on the whole combustion process was also explored. The pyrochlore-based waste form possessed high bulk density of 6.25 g/cm^3 and Vickers hardness of 10.81 GPa. The MCC-1 leaching test showed the normalized elemental leaching rates(42d) of Cu, Gd, and Zr are 1.27×10^(-2), 1.33×10^(-3), and 8.44×10^(-7)g·m^(-2)·d^(-1), respectively.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51672228 and 51202203)the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials(No.11zxfk26)+1 种基金the Young Outstanding Scientist Fund of Southwest University of Science and Technology(No.13zx9108)the Postgraduate Innovation Fund Project by Southwest University of Science and Technology(No.16ycx010)
文摘In this research, Zr-doped Gd_2Ti_2O_7 pyrochlores, with the composition of Gd_2(Ti_(1-x)Zr_x)_2O_7, were firstly synthesized by self-propagating high-temperature synthesis plus quick pressing(SHS/QP) using CuO as the oxidant and Ti as the reductant. To improve the radiation resistance of titanate–pyrochlore, up to 35 at% Zr was incorporated to substitute the Ti site of Gd_2Ti_2O_7 pyrochlore(Gd_2(Ti_(0.75)Zr_(0.35))_2O_7). XRD and SEM microstructural characterizations showed the formation of a composite ceramic with the major pyrochlore phase and the minor Cu phase. The generated temperature of samples decreased from 1702to 1011 ℃ with increasing Zr content. The effects of sintering temperature and pressure time on phase composition and microstructure were systematically studied. Besides, the influence of thermal transmission on the whole combustion process was also explored. The pyrochlore-based waste form possessed high bulk density of 6.25 g/cm^3 and Vickers hardness of 10.81 GPa. The MCC-1 leaching test showed the normalized elemental leaching rates(42d) of Cu, Gd, and Zr are 1.27×10^(-2), 1.33×10^(-3), and 8.44×10^(-7)g·m^(-2)·d^(-1), respectively.