Worldwide trends in mobile electrification,largely driven by the popularity of electric vehicles(EVs)will skyrocket demands for lithium-ion battery(LIB)production.As such,up to four million metric tons of LIB waste fr...Worldwide trends in mobile electrification,largely driven by the popularity of electric vehicles(EVs)will skyrocket demands for lithium-ion battery(LIB)production.As such,up to four million metric tons of LIB waste from EV battery packs could be generated from 2015 to 2040.LIB recycling directly addresses concerns over longterm economic strains due to the uneven geographic distribution of resources(especially for Co and Li)and environmental issues associated with both landfilling and raw material extraction.However,LIB recycling infrastructure has not been widely adopted,and current facilities are mostly focused on Co recovery for economic gains.This incentive will decline due to shifting market trends from LiCoO2 toward cobalt-deficient and mixed-metal cathodes(eg,LiNi1/3Mn1/3Co1/3O2).Thus,this review covers recycling strategies to recover metals in mixed-metal LIB cathodes and comingled scrap comprising different chemistries.As such,hydrometallurgical processes can meet this criterion,while also requiring a low environmental footprint and energy consumption compared to pyrometallurgy.Following pretreatment to separate the cathode from other battery components,the active material is dissolved entirely by reductive acid leaching.A complex leachate is generated,comprising cathode metals(Li+,Ni2+,Mn2+,and Co2+)and impurities(Fe3+,Al3+,and Cu2+)from the current collectors and battery casing,which can be separated and purified using a series of selective precipitation and/or solvent extraction steps.Alternatively,the cathode can be resynthesized directly from the leachate.展开更多
In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reacti...In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reaction temperature is 10 °C, and the separation factor does not further improve after a reaction time of 7 h. Moreover, slow dropping speed of the precipitation reagent is beneficial for improving the separation efficiency. When the H+/W molar ratio is below 1/1, the addition of acid to a neutral solution is favorable to the separation. For the solution with an ammonium concentration below 3 mol/L, the separation factor is high due to the high W-precipitation rate. Furthermore, the method is also effective when it is applied to industrial solution containing some other impurities. All these indicate the ferrous salts have great potential for removing W from Mo on a commercial scale.展开更多
A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and s...A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and selective sulfide precipitation of Cu from the leachate. The effects of various process parameters on the leaching and precipitation of Cu and As were investigated. At the first stage, Cu extraction of 95.2% and As extraction of 97.6% were obtained at 80 ℃ after 4 h with initial H2 SO4 concentration of 1.0 mol/L and liquid-to-solid ratio of 10 mL/g. In addition, the leaching kinetics of Cu and As was successfully reproduced by the Avrami model, and the apparent activation energies were found to be 33.6 and 35.1 kJ/mol for the Cu and As leaching reaction, respectively, suggesting a combination of chemical reaction and diffusion control. During the selective sulfide precipitation, about 99.4% Cu was recovered as CuS, while only 0.1% As was precipitated under the optimal conditions using sulfide-to-copper ratio of 2.4:1, time of 1.5 h and temperature of 25 ℃.展开更多
基金The authors gratefully acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)and the University of Waterloo.This work was financially supported by the 111 Project(no.D17007).Karthikeyan Kaliyappan acknowledges the financial support from Henan Normal University,China for this work.Tyler Or was supported through the NSERC Canada Graduate Scholarships—Master’s Program.
文摘Worldwide trends in mobile electrification,largely driven by the popularity of electric vehicles(EVs)will skyrocket demands for lithium-ion battery(LIB)production.As such,up to four million metric tons of LIB waste from EV battery packs could be generated from 2015 to 2040.LIB recycling directly addresses concerns over longterm economic strains due to the uneven geographic distribution of resources(especially for Co and Li)and environmental issues associated with both landfilling and raw material extraction.However,LIB recycling infrastructure has not been widely adopted,and current facilities are mostly focused on Co recovery for economic gains.This incentive will decline due to shifting market trends from LiCoO2 toward cobalt-deficient and mixed-metal cathodes(eg,LiNi1/3Mn1/3Co1/3O2).Thus,this review covers recycling strategies to recover metals in mixed-metal LIB cathodes and comingled scrap comprising different chemistries.As such,hydrometallurgical processes can meet this criterion,while also requiring a low environmental footprint and energy consumption compared to pyrometallurgy.Following pretreatment to separate the cathode from other battery components,the active material is dissolved entirely by reductive acid leaching.A complex leachate is generated,comprising cathode metals(Li+,Ni2+,Mn2+,and Co2+)and impurities(Fe3+,Al3+,and Cu2+)from the current collectors and battery casing,which can be separated and purified using a series of selective precipitation and/or solvent extraction steps.Alternatively,the cathode can be resynthesized directly from the leachate.
基金Project (2007AA06Z129) supported by the National High-tech Research and Development Program of China
文摘In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reaction temperature is 10 °C, and the separation factor does not further improve after a reaction time of 7 h. Moreover, slow dropping speed of the precipitation reagent is beneficial for improving the separation efficiency. When the H+/W molar ratio is below 1/1, the addition of acid to a neutral solution is favorable to the separation. For the solution with an ammonium concentration below 3 mol/L, the separation factor is high due to the high W-precipitation rate. Furthermore, the method is also effective when it is applied to industrial solution containing some other impurities. All these indicate the ferrous salts have great potential for removing W from Mo on a commercial scale.
基金financial supports from the National Natural Science Foundation of China (51634010,51904354)the National Science Fund for Distinguished Young Scholars of China (51825403)+1 种基金the National Key R&D Program of China (2018YFC1900306,2019YFC1907405)Key Research and Development Program of Hunan Province,China (2019SK2291)。
文摘A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and selective sulfide precipitation of Cu from the leachate. The effects of various process parameters on the leaching and precipitation of Cu and As were investigated. At the first stage, Cu extraction of 95.2% and As extraction of 97.6% were obtained at 80 ℃ after 4 h with initial H2 SO4 concentration of 1.0 mol/L and liquid-to-solid ratio of 10 mL/g. In addition, the leaching kinetics of Cu and As was successfully reproduced by the Avrami model, and the apparent activation energies were found to be 33.6 and 35.1 kJ/mol for the Cu and As leaching reaction, respectively, suggesting a combination of chemical reaction and diffusion control. During the selective sulfide precipitation, about 99.4% Cu was recovered as CuS, while only 0.1% As was precipitated under the optimal conditions using sulfide-to-copper ratio of 2.4:1, time of 1.5 h and temperature of 25 ℃.