Some earthquakes in recent years (such as Tangshan earthquake (1976, China), North Ridge earthquake (1994, USA), Kobe earthquake (1995, Japan)) did not occur in known faults;moreover, the detailed data of geology, ear...Some earthquakes in recent years (such as Tangshan earthquake (1976, China), North Ridge earthquake (1994, USA), Kobe earthquake (1995, Japan)) did not occur in known faults;moreover, the detailed data of geology, earthquake, crust deformation, etc. needed by the fault model are very difficult to obtain in many regions of the world. A simplified method of global seismic hazard analysis is developed, based on an area source model and by using seismicity data, and the global seismic hazard map is compiled. To evaluate the effectiveness and credibility of the new method, comparison study of this map with the existing national maps has been performed, which implies that it is considerably valuable to apply this method to practical use.展开更多
In this study, a composite source model has been used to calculate the realistic strong ground motions in Beijing area, caused by 1679 Ms8.0 earthquake in Sanhe-Pinggu. The results could provide us the useful physical...In this study, a composite source model has been used to calculate the realistic strong ground motions in Beijing area, caused by 1679 Ms8.0 earthquake in Sanhe-Pinggu. The results could provide us the useful physical parameters for the future seismic hazard analysis in this area. Considering the regional geological/geophysical background, we simulated the scenario earthquake with an associated ground motions in the area ranging from 39.3°N to 41. 1°N in latitude and from 115.35°E to 117.55°E in longitude. Some of the key factors which could influence the characteristics of strong ground motion have been discussed, and the resultant peak ground acceleration (PGA) distribution and the peak ground velocity (PGV) distribution around Beijing area also have been made as well. A comparison of the simulated result with the results derived from the attenuation relation has been made, and a sufficient discussion about the advantages and disadvantages of composite source model also has been given in this study. The numerical results, such as the PGA, PGV, peak ground displacement (PGD), and the three-component time-histories developed for Beijing area, have a potential application in earthquake engineering field and building code design, especially for the evaluation of critical constructions, government decision making and the seismic hazard assessment by financial/insurance companies.展开更多
利用华北地区地震活动性资料,建立了地震危险性计算的一致性模型。在此模型的基础上,得出了北京、天津、唐山和济南等7个城市未来2500年内地震的时空强度分布,并计算了2500年回复周期的地震动峰值加速度(PGA)。结果表明,唐山和太原的PG...利用华北地区地震活动性资料,建立了地震危险性计算的一致性模型。在此模型的基础上,得出了北京、天津、唐山和济南等7个城市未来2500年内地震的时空强度分布,并计算了2500年回复周期的地震动峰值加速度(PGA)。结果表明,唐山和太原的PGA最大(>0.2g),石家庄和北京次之(≈0.17g)。对华北地区2500年地震记录的正演计算结果表明,太原和唐山地区的潜在地震危险最有可能来源于震级在6.0~7.0、震中距离在12~15km的地震活动;而北京、天津和石家庄地区则可能来源于震级在5.5~6.0、震中距离在10km左右的地震活动。采用IBC(International Building Code)方法计算后的结果显示,太原、唐山等地区的PGA与2001年我国地震动峰值加速度值基本一致,与此地区的较高地震活动性特征相符。利用随机震源模型,还给出了影响此7个城市的最大地震记录的加速度、速度及位移时程曲线,这对本区工程建筑的抗震性设计以及对救援设施的选址等有重要作用。展开更多
文摘Some earthquakes in recent years (such as Tangshan earthquake (1976, China), North Ridge earthquake (1994, USA), Kobe earthquake (1995, Japan)) did not occur in known faults;moreover, the detailed data of geology, earthquake, crust deformation, etc. needed by the fault model are very difficult to obtain in many regions of the world. A simplified method of global seismic hazard analysis is developed, based on an area source model and by using seismicity data, and the global seismic hazard map is compiled. To evaluate the effectiveness and credibility of the new method, comparison study of this map with the existing national maps has been performed, which implies that it is considerably valuable to apply this method to practical use.
基金The One Hundred Individual Program of Chinese Academy of Sciences and National Natural Science Foundation of China (40574022).
文摘In this study, a composite source model has been used to calculate the realistic strong ground motions in Beijing area, caused by 1679 Ms8.0 earthquake in Sanhe-Pinggu. The results could provide us the useful physical parameters for the future seismic hazard analysis in this area. Considering the regional geological/geophysical background, we simulated the scenario earthquake with an associated ground motions in the area ranging from 39.3°N to 41. 1°N in latitude and from 115.35°E to 117.55°E in longitude. Some of the key factors which could influence the characteristics of strong ground motion have been discussed, and the resultant peak ground acceleration (PGA) distribution and the peak ground velocity (PGV) distribution around Beijing area also have been made as well. A comparison of the simulated result with the results derived from the attenuation relation has been made, and a sufficient discussion about the advantages and disadvantages of composite source model also has been given in this study. The numerical results, such as the PGA, PGV, peak ground displacement (PGD), and the three-component time-histories developed for Beijing area, have a potential application in earthquake engineering field and building code design, especially for the evaluation of critical constructions, government decision making and the seismic hazard assessment by financial/insurance companies.
文摘利用华北地区地震活动性资料,建立了地震危险性计算的一致性模型。在此模型的基础上,得出了北京、天津、唐山和济南等7个城市未来2500年内地震的时空强度分布,并计算了2500年回复周期的地震动峰值加速度(PGA)。结果表明,唐山和太原的PGA最大(>0.2g),石家庄和北京次之(≈0.17g)。对华北地区2500年地震记录的正演计算结果表明,太原和唐山地区的潜在地震危险最有可能来源于震级在6.0~7.0、震中距离在12~15km的地震活动;而北京、天津和石家庄地区则可能来源于震级在5.5~6.0、震中距离在10km左右的地震活动。采用IBC(International Building Code)方法计算后的结果显示,太原、唐山等地区的PGA与2001年我国地震动峰值加速度值基本一致,与此地区的较高地震活动性特征相符。利用随机震源模型,还给出了影响此7个城市的最大地震记录的加速度、速度及位移时程曲线,这对本区工程建筑的抗震性设计以及对救援设施的选址等有重要作用。