In this paper, a new technique is proposed for automatic segmentation of multiple sclerosis (MS) lesions from brain magnetic resonance imaging (MRI). The technique uses textural features to describe the blocks of each...In this paper, a new technique is proposed for automatic segmentation of multiple sclerosis (MS) lesions from brain magnetic resonance imaging (MRI). The technique uses textural features to describe the blocks of each MRI slice along with position and neighborhood features. A trained support vector machine (SVM) is used to discriminate between the blocks in regions of MS lesions and the blocks in non-MS lesion regions based on mainly the textural features with aid of the other features. The MRI slice blocks’ classification is used to provide an initial segmentation. A comprehensive post processing module is then utilized to refine and improve the quality of the initial segmentation. The main contribution of the proposed technique described in this paper is the use of textural features to detect MS lesions in a fully automated process without the need to manually define regions of interest (ROIs). In addition, the post processing module is generic enough to be applied to the results of any other MS segmentation technique to improve the segmentation quality. This technique is evaluated using ten real MRI data-sets with 10% used in the training of the textural-based SVM. The average results for the performance evaluation of the presented technique were 0.79 for dice similarity, 0.68 for sensitivity and 0.9 for the percentage of the detected lesion load. These results indicate that the proposed method would be useful in clinical practice for the detection of MS lesions from MRI.展开更多
Automatic identification of characters marked on billets is very important for steelworks to achieve manu- facturing and logistics informatization management. Due to the presence of adhesions, fractures, blurs, and ot...Automatic identification of characters marked on billets is very important for steelworks to achieve manu- facturing and logistics informatization management. Due to the presence of adhesions, fractures, blurs, and other problems in characters painted on billets, character recognition accuracy with machine vision is relatively low, and hardly meets practical application requirements. To make the character recognition results more reliable and accu- rate, an identification results classification and post-pro- cessing method has been proposed in this paper. By analyzing issues in the image segmentation and recognition stage, the recognition result classification model, based on character encoding rules and recognition confidence, is built, and the character recognition results can be classified as correct, suspect, or wrong. In the post-processing stage, a human-machine-cooperation mechanism with a post- processing interface is designed to eliminate error infor- mation in suspect and wrong types. The system was developed and experiments conducted with images acquired in an iron and steel factory. The results show the character recognition accuracy to be approximately 89% using the character recognizer. However, this result cannot be directly applied in information management systems. With the proposed post-processing method, a human worker will query the suspect and wrong results classified by the system, determine whether the result is correct or wrong, and then, correct the wrong result through the post-processing interface. Using this method, the character recognition accuracy ultimately improves to 99.4%. Thus, the results will be more reliable applied in a practical system.展开更多
文摘In this paper, a new technique is proposed for automatic segmentation of multiple sclerosis (MS) lesions from brain magnetic resonance imaging (MRI). The technique uses textural features to describe the blocks of each MRI slice along with position and neighborhood features. A trained support vector machine (SVM) is used to discriminate between the blocks in regions of MS lesions and the blocks in non-MS lesion regions based on mainly the textural features with aid of the other features. The MRI slice blocks’ classification is used to provide an initial segmentation. A comprehensive post processing module is then utilized to refine and improve the quality of the initial segmentation. The main contribution of the proposed technique described in this paper is the use of textural features to detect MS lesions in a fully automated process without the need to manually define regions of interest (ROIs). In addition, the post processing module is generic enough to be applied to the results of any other MS segmentation technique to improve the segmentation quality. This technique is evaluated using ten real MRI data-sets with 10% used in the training of the textural-based SVM. The average results for the performance evaluation of the presented technique were 0.79 for dice similarity, 0.68 for sensitivity and 0.9 for the percentage of the detected lesion load. These results indicate that the proposed method would be useful in clinical practice for the detection of MS lesions from MRI.
文摘Automatic identification of characters marked on billets is very important for steelworks to achieve manu- facturing and logistics informatization management. Due to the presence of adhesions, fractures, blurs, and other problems in characters painted on billets, character recognition accuracy with machine vision is relatively low, and hardly meets practical application requirements. To make the character recognition results more reliable and accu- rate, an identification results classification and post-pro- cessing method has been proposed in this paper. By analyzing issues in the image segmentation and recognition stage, the recognition result classification model, based on character encoding rules and recognition confidence, is built, and the character recognition results can be classified as correct, suspect, or wrong. In the post-processing stage, a human-machine-cooperation mechanism with a post- processing interface is designed to eliminate error infor- mation in suspect and wrong types. The system was developed and experiments conducted with images acquired in an iron and steel factory. The results show the character recognition accuracy to be approximately 89% using the character recognizer. However, this result cannot be directly applied in information management systems. With the proposed post-processing method, a human worker will query the suspect and wrong results classified by the system, determine whether the result is correct or wrong, and then, correct the wrong result through the post-processing interface. Using this method, the character recognition accuracy ultimately improves to 99.4%. Thus, the results will be more reliable applied in a practical system.