期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
图像分割中的超像素方法研究综述 被引量:97
1
作者 宋熙煜 周利莉 +3 位作者 李中国 陈健 曾磊 闫镔 《中国图象图形学报》 CSCD 北大核心 2015年第5期599-608,共10页
目的超像素(superpixel)是近年来快速发展的一种图像预处理技术,它将图像快速分割为一定数量的具有语义意义的子区域,相比于传统处理方法中的基本单元——像素,超像素更有利于局部特征的提取与结构信息的表达,并且能够大幅度降低后续处... 目的超像素(superpixel)是近年来快速发展的一种图像预处理技术,它将图像快速分割为一定数量的具有语义意义的子区域,相比于传统处理方法中的基本单元——像素,超像素更有利于局部特征的提取与结构信息的表达,并且能够大幅度降低后续处理的计算复杂度,在计算机视觉领域尤其是图像分割中得到了广泛的应用,为使国内外研究者对超像素理论及其在图像分割中的应用有一个比较全面的认识,对其进行系统综述。方法以图像分割为应用背景,在广泛调研文献特别是超像素最新发展成果的基础上,结合对比实验,对每种方法的基本思想、方法特点进行总结,并对超像素分割目前存在的局限性进行说明,对未来可能发展方向进行展望。结果不同的超像素分割算法在分割思想、性能特点上各不相同。当前的超像素方法普遍在超像素数量、紧密度与分割质量、算法实用性之间存在相互制约,同时对于某些特殊目标的分割也难以取得较好的结果。结论超像素作为一种有效的图像预处理手段具有较高的研究价值,但针对目前超像素存在的一些局限性还需要进行深入的研究。 展开更多
关键词 超像素 图像分割 图论 区域合并 评价标准
原文传递
图像分割评估方法在显微图像分析中的应用 被引量:10
2
作者 马博渊 姜淑芳 +6 位作者 尹豆 申昊锴 班晓娟 黄海友 王浩 薛维华 封华 《工程科学学报》 EI CSCD 北大核心 2021年第1期137-149,共13页
图像分割是计算机视觉领域中的重要分支,旨在将图像分成若干个特定的、具有独特性质的区域.随着计算机硬件计算能力的提高和计算方法的进步,大量基于不同理论的图像分割算法获得了长足的发展.因而选择合适的评估方法对分割结果的准确性... 图像分割是计算机视觉领域中的重要分支,旨在将图像分成若干个特定的、具有独特性质的区域.随着计算机硬件计算能力的提高和计算方法的进步,大量基于不同理论的图像分割算法获得了长足的发展.因而选择合适的评估方法对分割结果的准确性和适用性进行综合评估,从而选择最优分割算法,成为图像分割研究中的必要环节.在综述14种图像分割评估指标的基础上,将其分成基于像素的评估方法、基于类内重合度的评估方法、基于边界的评估方法、基于聚类的评估方法和基于实例的评估方法五大类.在材料显微图像分析的应用背景下,通过实验讨论了不同分割方法和不同典型噪声在不同评估方法中的表现.最终,讨论了各种评估方法的优势和适用性. 展开更多
关键词 计算机视觉 图像分割 图像处理 评估方法 材料显微图像
下载PDF
Supervised and Semi-supervised Methods for Abdominal Organ Segmentation: A Review 被引量:3
3
作者 Isaac Baffour Senkyire Zhe Liu 《International Journal of Automation and computing》 EI CSCD 2021年第6期887-914,共28页
Abdominal organ segmentation is the segregation of a single or multiple abdominal organ(s) into semantic image segments of pixels identified with homogeneous features such as color and texture, and intensity. The abdo... Abdominal organ segmentation is the segregation of a single or multiple abdominal organ(s) into semantic image segments of pixels identified with homogeneous features such as color and texture, and intensity. The abdominal organ(s) condition is mostly connected with greater morbidity and mortality. Most patients often have asymptomatic abdominal conditions and symptoms, which are often recognized late;hence the abdomen has been the third most common cause of damage to the human body. That notwithstanding,there may be improved outcomes where the condition of an abdominal organ is detected earlier. Over the years, supervised and semi-supervised machine learning methods have been used to segment abdominal organ(s) in order to detect the organ(s) condition. The supervised methods perform well when the used training data represents the target data, but the methods require large manually annotated data and have adaptation problems. The semi-supervised methods are fast but record poor performance than the supervised if assumptions about the data fail to hold. Current state-of-the-art methods of supervised segmentation are largely based on deep learning techniques due to their good accuracy and success in real world applications. Though it requires a large amount of training data for automatic feature extraction, deep learning can hardly be used. As regards the semi-supervised methods of segmentation, self-training and graph-based techniques have attracted much research attention. Self-training can be used with any classifier but does not have a mechanism to rectify mistakes early. Graph-based techniques thrive on their convexity, scalability, and effectiveness in application but have an out-of-sample problem. In this review paper, a study has been carried out on supervised and semi-supervised methods of performing abdominal organ segmentation. An observation of the current approaches, connection and gaps are identified, and prospective future research opportunities are enumerated. 展开更多
关键词 Abdominal organ supervised segmentation semi-supervised segmentation evaluation metrics image segmentation machine learning
原文传递
A Study on the Influence of Luminance L* in the L*a*b* Color Space during Color Segmentation 被引量:1
4
作者 Rodolfo Alvarado-Cervantes Edgardo M. Felipe-Riveron +1 位作者 Vladislav Khartchenko Oleksiy Pogrebnyak 《Journal of Computer and Communications》 2016年第3期28-34,共7页
In this paper an evaluation of the influence of luminance L* at the L*a*b* color space during color segmentation is presented. A comparative study is made between the behavior of segmentation in color images using onl... In this paper an evaluation of the influence of luminance L* at the L*a*b* color space during color segmentation is presented. A comparative study is made between the behavior of segmentation in color images using only the Euclidean metric of a* and b* and an adaptive color similarity function defined as a product of Gaussian functions in a modified HSI color space. For the evaluation synthetic images were particularly designed to accurately assess the performance of the color segmentation. The testing system can be used either to explore the behavior of a similarity function (or metric) in different color spaces or to explore different metrics (or similarity functions) in the same color space. From the results is obtained that the color parameters a* and b* are not independent of the luminance parameter L* as one might initially assume. 展开更多
关键词 Color Image segmentation CIELAB Color Space L*a*b* Color Space Color metrics Color segmentation evaluation Synthetic Color Image Generation
下载PDF
三维网格分割的错分评价准则
5
作者 孙晓鹏 钊小娜 +2 位作者 李翠芳 纪燕杰 魏小鹏 《小型微型计算机系统》 CSCD 北大核心 2012年第8期1811-1815,共5页
提出一种新的、基于面片错分率和面积错分率的三维网格模型分割定量评价准则.定量评价是精确衡量分割效果、针对特定应用选择最有效的分割算法、以及指导新算法研究的重要基础.基于分割质量显著的数据库进行的三维分割评价准则给出的定... 提出一种新的、基于面片错分率和面积错分率的三维网格模型分割定量评价准则.定量评价是精确衡量分割效果、针对特定应用选择最有效的分割算法、以及指导新算法研究的重要基础.基于分割质量显著的数据库进行的三维分割评价准则给出的定量评价指标属于模糊的、统计性质的评价,在评价特定类型的分割时,该评价指标的可信较低、精确性较差.本文基于普林斯顿大学数据库中7类385份高质量的手工分割结果,以及7种自动分割算法中分割数目与手工分割数目相近的部分高质量数据,基于面片错分和面积错分两种准则,对7种自动分割算法进行定量了评价.实验证明本文提出的两种错分评价准则具有较高的精度和可信性. 展开更多
关键词 网格分割 定量评价准则 面片错分率 面积错分率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部