期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Object-based classification of hyperspectral data using Random Forest algorithm 被引量:2
1
作者 Saeid Amini Saeid Homayouni +1 位作者 Abdolreza Safari Ali A.Darvishsefat 《Geo-Spatial Information Science》 SCIE CSCD 2018年第2期127-138,共12页
This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algori... This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algorithms.The first step is to determine of weights of the input features while using the object-based approach with MRS to processing such images.Given the high number of input features,an automatic method is needed for estimation of this parameter.Moreover,we used the Variable Importance(VI),one of the outputs of the RFC,to determine the importance of each image band.Then,based on this parameter and other required parameters,the image is segmented into some homogenous regions.Finally,the RFC is carried out based on the characteristics of segments for converting them into meaningful objects.The proposed method,as well as,the conventional pixel-based RFC and Support Vector Machine(SVM)method was applied to three different hyperspectral data-sets with various spectral and spatial characteristics.These data were acquired by the HyMap,the Airborne Prism Experiment(APEX),and the Compact Airborne Spectrographic Imager(CASI)hyperspectral sensors.The experimental results show that the proposed method is more consistent for land cover mapping in various areas.The overall classification accuracy(OA),obtained by the proposed method was 95.48,86.57,and 84.29%for the HyMap,the APEX,and the CASI datasets,respectively.Moreover,this method showed better efficiency in comparison to the spectralbased classifications because the OAs of the proposed method was 5.67 and 3.75%higher than the conventional RFC and SVM classifiers,respectively. 展开更多
关键词 Object-based classification Random Forest algorithm multi-resolution segmentation(mrs) hyperspectral imagery
原文传递
基于多源高分卫星影像的果棉套种信息提取 被引量:3
2
作者 王玉 付梅臣 +1 位作者 王力 王长耀 《国土资源遥感》 CSCD 北大核心 2017年第2期152-159,共8页
棉花与果树间作在新疆多地区普遍存在,了解套种情况有利于查明果棉产量以及与常规棉田产量结构差异。为此,提出了一种综合使用多源高分遥感数据的果棉间作信息提取方法。首先,在优化分割尺度基础上分析Quick Bird卫星数据的光谱、形状... 棉花与果树间作在新疆多地区普遍存在,了解套种情况有利于查明果棉产量以及与常规棉田产量结构差异。为此,提出了一种综合使用多源高分遥感数据的果棉间作信息提取方法。首先,在优化分割尺度基础上分析Quick Bird卫星数据的光谱、形状和纹理特征并建立规则集;其次,使用面向对象的分类方法逐步剔除非农田信息形成地块专题图,基于专题图选择最佳纹理特征提取果树分布并以地块为单位统计套种比例;最后,依据棉花物候特征对高分一号数据多时相分类得到棉花种植信息,结合套种比例结果,统计果棉套种面积及程度。精度检验结果表明:该文提出的方法与传统抽样调查法相比能够为大量地块信息的采集节省人工成本和时间,果棉信息提取精度为89.16%,可以在统计调查工作中用于新疆果棉套种的自动化提取。 展开更多
关键词 面向对象 多尺度分割 果棉套种 纹理特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部