期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于IWHO-EKF的高速免耕播种机播种深度监测系统研究
被引量:
1
1
作者
王淞
衣淑娟
+3 位作者
赵斌
李衣菲
陶桂香
毛欣
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第3期75-84,共10页
为解决免耕播种机高速(12~16 km/h)作业时因地势起伏造成机械振动与传感器测量误差导致的播种深度监测系统精度降低,以及单一传感器监测可靠性较差的问题,研究了一种基于改进野马算法(Improved wild horse optimizer,IWHO)优化扩展卡尔...
为解决免耕播种机高速(12~16 km/h)作业时因地势起伏造成机械振动与传感器测量误差导致的播种深度监测系统精度降低,以及单一传感器监测可靠性较差的问题,研究了一种基于改进野马算法(Improved wild horse optimizer,IWHO)优化扩展卡尔曼滤波器(Extended Kalman filter,EKF)中关键参数Q_(sigma)、R_(sigma1)、R_(sigma2)、R_(sigma3)的多传感器数据融合算法(IWHO-EKF)的高速免耕播种机播种深度监测系统。首先,建立以激光、超声波与角度传感器为多传感器监测单元的播种深度监测模型;其次,通过卡尔曼滤波算法对3个单一传感器分别滤波;最后,提出一种加入莱维飞行与高斯变异的IWHO-EKF算法,将滤波后的3个单一传感器进行数据融合,从而解决机械振动干扰与传感器测量误差降低的问题,同时充分发挥多传感器融合信息,确保免耕播种机高速作业时实现高精度、高可靠性播种深度实时监测。为验证其优越性,通过IWHO-EKF算法与单一传感器监测、单一传感器滤波和WHO-EKF算法进行仿真对比试验与田间试验。仿真试验表明:基于IWHO-EKF的高速免耕播种机播种深度监测算法平均绝对误差为0.073 cm,均方根误差为0.090 cm,相关系数为0.983,实现了高精度监测,且精度相较于传感器原始监测值、滤波值与WHO-EKF算法均显著提升。田间试验结果表明:基于IWHO-EKF算法的高速免耕播种机播种深度监测系统相较于3个单一传感器监测值,平均绝对误差和平均均方根误差分别降低0.063 cm和0.067 cm,同时平均相关系数提升0.027,该系统能够提高播种深度监测系统的精确性和可靠性。
展开更多
关键词
高速免耕播种机
播种深度监测系统
改进野马算法
扩展卡尔曼滤波器
数据融合
下载PDF
职称材料
题名
基于IWHO-EKF的高速免耕播种机播种深度监测系统研究
被引量:
1
1
作者
王淞
衣淑娟
赵斌
李衣菲
陶桂香
毛欣
机构
黑龙江八一农垦大学工程学院
黑龙江省农机智能装备重点实验室
东北农业大学工程学院
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第3期75-84,共10页
基金
国家自然科学基金项目(52275246)
黑龙江省重点研发计划重大项目(2022ZX05B02)
黑龙江省“百千万”工程科技重大专项(2020ZX17B01-3)。
文摘
为解决免耕播种机高速(12~16 km/h)作业时因地势起伏造成机械振动与传感器测量误差导致的播种深度监测系统精度降低,以及单一传感器监测可靠性较差的问题,研究了一种基于改进野马算法(Improved wild horse optimizer,IWHO)优化扩展卡尔曼滤波器(Extended Kalman filter,EKF)中关键参数Q_(sigma)、R_(sigma1)、R_(sigma2)、R_(sigma3)的多传感器数据融合算法(IWHO-EKF)的高速免耕播种机播种深度监测系统。首先,建立以激光、超声波与角度传感器为多传感器监测单元的播种深度监测模型;其次,通过卡尔曼滤波算法对3个单一传感器分别滤波;最后,提出一种加入莱维飞行与高斯变异的IWHO-EKF算法,将滤波后的3个单一传感器进行数据融合,从而解决机械振动干扰与传感器测量误差降低的问题,同时充分发挥多传感器融合信息,确保免耕播种机高速作业时实现高精度、高可靠性播种深度实时监测。为验证其优越性,通过IWHO-EKF算法与单一传感器监测、单一传感器滤波和WHO-EKF算法进行仿真对比试验与田间试验。仿真试验表明:基于IWHO-EKF的高速免耕播种机播种深度监测算法平均绝对误差为0.073 cm,均方根误差为0.090 cm,相关系数为0.983,实现了高精度监测,且精度相较于传感器原始监测值、滤波值与WHO-EKF算法均显著提升。田间试验结果表明:基于IWHO-EKF算法的高速免耕播种机播种深度监测系统相较于3个单一传感器监测值,平均绝对误差和平均均方根误差分别降低0.063 cm和0.067 cm,同时平均相关系数提升0.027,该系统能够提高播种深度监测系统的精确性和可靠性。
关键词
高速免耕播种机
播种深度监测系统
改进野马算法
扩展卡尔曼滤波器
数据融合
Keywords
High-speed
no-till
seed
er
seeding
depth
monitoring
improved
wild
horse
optimizer
extended
Kalman
filter
data
fusion
分类号
S223.2 [农业科学—农业机械化工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于IWHO-EKF的高速免耕播种机播种深度监测系统研究
王淞
衣淑娟
赵斌
李衣菲
陶桂香
毛欣
《农业机械学报》
EI
CAS
CSCD
北大核心
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部