Based on the core, cast thin section, whole rock analysis, conventional physical properties and high pressure mercury intrusion test, the sedimentary diagenesis characteristics of rudist shoal in Cretaceous Mishrif Fo...Based on the core, cast thin section, whole rock analysis, conventional physical properties and high pressure mercury intrusion test, the sedimentary diagenesis characteristics of rudist shoal in Cretaceous Mishrif Formation of H Oilfield, Iraq and its control on the reservoir were studied. The rudist shoal of the Mishrif Formation develops in the high-stand systems tract and is distributed in the high places of paleogeomorphology on the edge of platform with strong hydrodynamic force. According to the relative sea level changes, lithologic evolution and sedimentary structure characteristics of the rudist shoal, the single rudist shoal is divided into four lithologic sections: A, B, C and D, that is, low-angle cross-bedding pelletoids-rudist packstone, low-angle cross-bedding and parallel bedding arene-rudist grainstone, parallel bedding rudist gravel limestone, and horizontal bedding carbonaceous mudstone. The complete sedimentary sequence of a single rudist shoal is often disrupted. Several rudist shoals superimpose to form thick rudist shoal sediment. The single rudist shoal thickness and lithologic sections assemblage change regularly in vertical direction. The rudist shoal has the characteristics of "strong dissolution, weak cementation and strong compaction", forming pore-type reservoir with intergranular pores, intergranular dissolved pores, mold pores, and dissolved pores. With mainly coarse pore throats larger than 5 μm, the reservoir is of medium-high porosity and high permeability. There is lithological reverse cycles inside single shoals and between single shoals, with content of mud crystals decreasing from the bottom to the top, dissolution increasing, cementation decreasing in strength, pore throats getting larger, and physical properties turning better. The rudist shoal of MB2-1 at the top of the high-stand systems tract has the largest thickness, moreover, subject to the strongest atmospheric freshwater leaching, this layer has the most significant dissolution and the largest pore throat, so it 展开更多
The Asri basin is a typical half-graben basin. The east side of the basin is a steep slope controlled by synrifting and the west side is a widespread gentle slope. In the early Tertiary, it was filled with terrigenous...The Asri basin is a typical half-graben basin. The east side of the basin is a steep slope controlled by synrifting and the west side is a widespread gentle slope. In the early Tertiary, it was filled with terrigenous clastic sediments composed of the Banuwati and Talang Akar formations from bottom to top. The latter is further divided into the Zelda member (lower part) and the Gita member (upper part). The previous studies suggested that the early tertiary sediments are alluvial, fluvial and swamp deposits. In this paper, based on the core lithology, well logs and seismic data, the sediments should be alluvial, fluvial and lacustrine systems. The lacustrine system includes subaqeous fan, fan delta and delta, shore-shallow lake, deep lake and turbidite fan deposition. Alluvial fan, subaqeous fan and fan delta sediments were deposited in the early stage and located on the steep slope adjacent. The deltaic sedimentary system was usually distributed on the gentle slope of the basin. In the early Tertiary, the basin evolution could be divided into four stages: initial subsidence (matching Banuwati formation), rapid subsidence (matching low Zelda member), steady subsidence or fluctuation (matching middle Zelda) and uplifting (matching upper Zelda). At the first stage, the alluvial fan, flood plain, braided stream sediments were deposited first with thick brown conglomerate and pebble sandstones, and then subaqeous fan sediments were interbedded with the thick lacustrine mudstones. At the second stage, shore-shallow lake and deep lake and turbidite fan sediments were deposited, with thin fine sandstones and siltstones interbedded with thick mudstones. At the third stage, thick fan delta and delta sandstones were deposited. At last came fluvial meandering, anastomosed and swamp sediments. Sediment supply was mainly from the west and the east, partly from the north.展开更多
基金Supported by the China National Science and Technology Major Project(2017ZX05030-001)
文摘Based on the core, cast thin section, whole rock analysis, conventional physical properties and high pressure mercury intrusion test, the sedimentary diagenesis characteristics of rudist shoal in Cretaceous Mishrif Formation of H Oilfield, Iraq and its control on the reservoir were studied. The rudist shoal of the Mishrif Formation develops in the high-stand systems tract and is distributed in the high places of paleogeomorphology on the edge of platform with strong hydrodynamic force. According to the relative sea level changes, lithologic evolution and sedimentary structure characteristics of the rudist shoal, the single rudist shoal is divided into four lithologic sections: A, B, C and D, that is, low-angle cross-bedding pelletoids-rudist packstone, low-angle cross-bedding and parallel bedding arene-rudist grainstone, parallel bedding rudist gravel limestone, and horizontal bedding carbonaceous mudstone. The complete sedimentary sequence of a single rudist shoal is often disrupted. Several rudist shoals superimpose to form thick rudist shoal sediment. The single rudist shoal thickness and lithologic sections assemblage change regularly in vertical direction. The rudist shoal has the characteristics of "strong dissolution, weak cementation and strong compaction", forming pore-type reservoir with intergranular pores, intergranular dissolved pores, mold pores, and dissolved pores. With mainly coarse pore throats larger than 5 μm, the reservoir is of medium-high porosity and high permeability. There is lithological reverse cycles inside single shoals and between single shoals, with content of mud crystals decreasing from the bottom to the top, dissolution increasing, cementation decreasing in strength, pore throats getting larger, and physical properties turning better. The rudist shoal of MB2-1 at the top of the high-stand systems tract has the largest thickness, moreover, subject to the strongest atmospheric freshwater leaching, this layer has the most significant dissolution and the largest pore throat, so it
文摘The Asri basin is a typical half-graben basin. The east side of the basin is a steep slope controlled by synrifting and the west side is a widespread gentle slope. In the early Tertiary, it was filled with terrigenous clastic sediments composed of the Banuwati and Talang Akar formations from bottom to top. The latter is further divided into the Zelda member (lower part) and the Gita member (upper part). The previous studies suggested that the early tertiary sediments are alluvial, fluvial and swamp deposits. In this paper, based on the core lithology, well logs and seismic data, the sediments should be alluvial, fluvial and lacustrine systems. The lacustrine system includes subaqeous fan, fan delta and delta, shore-shallow lake, deep lake and turbidite fan deposition. Alluvial fan, subaqeous fan and fan delta sediments were deposited in the early stage and located on the steep slope adjacent. The deltaic sedimentary system was usually distributed on the gentle slope of the basin. In the early Tertiary, the basin evolution could be divided into four stages: initial subsidence (matching Banuwati formation), rapid subsidence (matching low Zelda member), steady subsidence or fluctuation (matching middle Zelda) and uplifting (matching upper Zelda). At the first stage, the alluvial fan, flood plain, braided stream sediments were deposited first with thick brown conglomerate and pebble sandstones, and then subaqeous fan sediments were interbedded with the thick lacustrine mudstones. At the second stage, shore-shallow lake and deep lake and turbidite fan sediments were deposited, with thin fine sandstones and siltstones interbedded with thick mudstones. At the third stage, thick fan delta and delta sandstones were deposited. At last came fluvial meandering, anastomosed and swamp sediments. Sediment supply was mainly from the west and the east, partly from the north.