Low-temperature slab-reheated grain-oriented silicon steel is characterized by a sharp {411}〈148〉 primary recrystallization texture. To date, the influence of this texture on secondary recrystallization is not clear...Low-temperature slab-reheated grain-oriented silicon steel is characterized by a sharp {411}〈148〉 primary recrystallization texture. To date, the influence of this texture on secondary recrystallization is not clear. Microtextures in primary and secondary reerystallized sheets of low-temperature reheated grain-oriented silicon steel were examined using electron backscatter diffraction. By comparing the textures and microstructures of specific primary reerystallized grains neighboring secondary grains with those of other primary grains, the influences of primary re- crystallization textures and microstructures on the orientations of secondary grains were investigated. Results show that for low-temperature reheated graiworiented silicon steel, the primary recrystallization sheet comprises { 411 } 〈148〉, {111}〈112〉, and {001}〈120〉 texture componems. During secondary recrystallization, the {111}〈112〉 primary recrystallized grains were easily consumed by abnormally grown Goss, deviated Goss, Brass, or {210}〈001〉grains ;the { 411 }〈148〉 primary recrystallized grains were more resistant to being swallowed; and the {001} 〈120 grains were the most resistant to being consumed. For a particular primary grain, the distribution of its surrounding grain boundaries determined how easily it is consumed during secondary recrystallization. Primary grains surrounded by 20°- 45° grain boundaries were consumed much earlier than those having grain boundaries above 45°, which is in accordance with high-energy grain boundary theory. In addition, special ∑9 boundaries between {411}〈148〉 and Goss grains move more slowly than ∑9 boundaries between {111 }〈112〉 and Goss grains, which is attributed to the different positions of 〈110〉 rotation axis with respect to the normals of grain boundaries.展开更多
The behaviors of different inhibitors including their composition, size, distribution, coalescence and coarsening were experimen-tally studied. It was observed that during secondary recrystallization of the tested ste...The behaviors of different inhibitors including their composition, size, distribution, coalescence and coarsening were experimen-tally studied. It was observed that during secondary recrystallization of the tested steel, the key inhibition effect was produced by Cu2S and AlN, but not MnS. With the increase of temperature, the size distributions of AlN and Cu2S were changed to some extent. However, signifi-cant changes in particle size were not observed. The initial temperature of abnormal growth was determined by measuring the evolution of particle sizes and their distribution density during heat treatment. AlN and Cu2S are the dominant inhibitors and both are necessary, which is verified by calculating the Zener factor.展开更多
In this study, high- and low-grade grain-oriented electrical steels were used as the initial materials to produce 0.08-mm-thick sheet with one-step cold-rolling method. Electron backscattering diffraction analysis tec...In this study, high- and low-grade grain-oriented electrical steels were used as the initial materials to produce 0.08-mm-thick sheet with one-step cold-rolling method. Electron backscattering diffraction analysis technique and X-ray diffraction texture analysis technique were adopted to investigate the effect of initial Goss texture sharpness on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The results showed that primary recrystal- lization and secondary recrystallization were the main processes that occurred during annealing. The induced factors for secondary recrystallization of two grades samples were not Consistent. The high-grade samples presented texture induction mechanism, while the low-grade samples revealed strong surface-energy induction mechanism. The initial Goss texture sharpness had a great impact on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The Goss texture component formed after primary recrystallization was stronger, and better magnetic properties were obtained at low frequencies. For low-grade samples, secondary recrystallization enhanced the intensity of Goss texture, and both grain size and texture contributed to better high-frequency magnetic properties after secondary recrystallization. By controlling the annealing process, the magnetic properties of low-grade products could be significantly improved, thus achieving conversion from low-grade to high-grade products.展开更多
High energy synchrotron diffraction offers great potential to study the recrystallization kinetics of metallic materials. To study the formation of Goss texture ({ [10}(001)) of grain oriented (GO) silicon steel...High energy synchrotron diffraction offers great potential to study the recrystallization kinetics of metallic materials. To study the formation of Goss texture ({ [10}(001)) of grain oriented (GO) silicon steel during secondary recrystallization process, an in situ experiment using hi gh energy X-ray diffraction was designed. The results showed that the secondary recrystallization began when the heating temperature was 1,494 K, and the grains grew rapidly above this temperature. With an increase in annealing temperature, the large grains with 7 orientation [〈111〉//normal direction] formed and gradually occupied the dominant position. As the annealing temperature increased even further, the grains with Goss orientation to a very large size by devouring the 7 orientation grains that formed in the early annealing stage. A single crystal with a Goss orientation was observed in the GO silicon steel when the annealing temperature was 1,540 K.展开更多
基金Item Sponsored by National High Technology Research and Development Program of China(2012AA03A505)
文摘Low-temperature slab-reheated grain-oriented silicon steel is characterized by a sharp {411}〈148〉 primary recrystallization texture. To date, the influence of this texture on secondary recrystallization is not clear. Microtextures in primary and secondary reerystallized sheets of low-temperature reheated grain-oriented silicon steel were examined using electron backscatter diffraction. By comparing the textures and microstructures of specific primary reerystallized grains neighboring secondary grains with those of other primary grains, the influences of primary re- crystallization textures and microstructures on the orientations of secondary grains were investigated. Results show that for low-temperature reheated graiworiented silicon steel, the primary recrystallization sheet comprises { 411 } 〈148〉, {111}〈112〉, and {001}〈120〉 texture componems. During secondary recrystallization, the {111}〈112〉 primary recrystallized grains were easily consumed by abnormally grown Goss, deviated Goss, Brass, or {210}〈001〉grains ;the { 411 }〈148〉 primary recrystallized grains were more resistant to being swallowed; and the {001} 〈120 grains were the most resistant to being consumed. For a particular primary grain, the distribution of its surrounding grain boundaries determined how easily it is consumed during secondary recrystallization. Primary grains surrounded by 20°- 45° grain boundaries were consumed much earlier than those having grain boundaries above 45°, which is in accordance with high-energy grain boundary theory. In addition, special ∑9 boundaries between {411}〈148〉 and Goss grains move more slowly than ∑9 boundaries between {111 }〈112〉 and Goss grains, which is attributed to the different positions of 〈110〉 rotation axis with respect to the normals of grain boundaries.
基金supported by the National Natural Science Foundation of China (No.50871015)
文摘The behaviors of different inhibitors including their composition, size, distribution, coalescence and coarsening were experimen-tally studied. It was observed that during secondary recrystallization of the tested steel, the key inhibition effect was produced by Cu2S and AlN, but not MnS. With the increase of temperature, the size distributions of AlN and Cu2S were changed to some extent. However, signifi-cant changes in particle size were not observed. The initial temperature of abnormal growth was determined by measuring the evolution of particle sizes and their distribution density during heat treatment. AlN and Cu2S are the dominant inhibitors and both are necessary, which is verified by calculating the Zener factor.
基金financially supported by the National High Technology Research and Development Program of China(Grant No.2012AA03A505)
文摘In this study, high- and low-grade grain-oriented electrical steels were used as the initial materials to produce 0.08-mm-thick sheet with one-step cold-rolling method. Electron backscattering diffraction analysis technique and X-ray diffraction texture analysis technique were adopted to investigate the effect of initial Goss texture sharpness on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The results showed that primary recrystal- lization and secondary recrystallization were the main processes that occurred during annealing. The induced factors for secondary recrystallization of two grades samples were not Consistent. The high-grade samples presented texture induction mechanism, while the low-grade samples revealed strong surface-energy induction mechanism. The initial Goss texture sharpness had a great impact on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The Goss texture component formed after primary recrystallization was stronger, and better magnetic properties were obtained at low frequencies. For low-grade samples, secondary recrystallization enhanced the intensity of Goss texture, and both grain size and texture contributed to better high-frequency magnetic properties after secondary recrystallization. By controlling the annealing process, the magnetic properties of low-grade products could be significantly improved, thus achieving conversion from low-grade to high-grade products.
基金supported by the Key Projects of the National Science & Technology Pillar Program (No. 2011BAE13B03)the Fundamental Research Funds for the Central Universities (No. N110502001)
文摘High energy synchrotron diffraction offers great potential to study the recrystallization kinetics of metallic materials. To study the formation of Goss texture ({ [10}(001)) of grain oriented (GO) silicon steel during secondary recrystallization process, an in situ experiment using hi gh energy X-ray diffraction was designed. The results showed that the secondary recrystallization began when the heating temperature was 1,494 K, and the grains grew rapidly above this temperature. With an increase in annealing temperature, the large grains with 7 orientation [〈111〉//normal direction] formed and gradually occupied the dominant position. As the annealing temperature increased even further, the grains with Goss orientation to a very large size by devouring the 7 orientation grains that formed in the early annealing stage. A single crystal with a Goss orientation was observed in the GO silicon steel when the annealing temperature was 1,540 K.