An objective of this work is to develop a validated computational model that can be used to estimate ratcheting accumulation behavior of granular soils due to high-cyclic loading. An accumulation model was proposed to...An objective of this work is to develop a validated computational model that can be used to estimate ratcheting accumulation behavior of granular soils due to high-cyclic loading. An accumulation model was proposed to describe only the envelope of the maximum plastic deformations generated during the cyclic loading process, which can calculate the accumulated deformation by means of relatively large load cycle increments. The concept of volumetric hardening was incorporated into the model and a so-called overstress formulation was employed to describe the evolution of the accumulated volumetric deformation as a state parameter. The model accounted for ratcheting shakedown and accumulation such as a pseudo-yield surface(a shakedown surface) associated with loading inside the current virgin yield surface which was implemented into the well-known modified Cam-clay model. Finally, the model was calibrated using data from the stress-controlled drained cyclic triaxial tests on homogeneous fine grained sands. It is seen that the model can successfully represent important features of the ratcheting accumulation of both volumetric and deviatoric deformation caused by repeated drained loading over a large number of cycles.展开更多
基金Projects(41302219,41302076)supported by the National Natural Science Foundation of China
文摘An objective of this work is to develop a validated computational model that can be used to estimate ratcheting accumulation behavior of granular soils due to high-cyclic loading. An accumulation model was proposed to describe only the envelope of the maximum plastic deformations generated during the cyclic loading process, which can calculate the accumulated deformation by means of relatively large load cycle increments. The concept of volumetric hardening was incorporated into the model and a so-called overstress formulation was employed to describe the evolution of the accumulated volumetric deformation as a state parameter. The model accounted for ratcheting shakedown and accumulation such as a pseudo-yield surface(a shakedown surface) associated with loading inside the current virgin yield surface which was implemented into the well-known modified Cam-clay model. Finally, the model was calibrated using data from the stress-controlled drained cyclic triaxial tests on homogeneous fine grained sands. It is seen that the model can successfully represent important features of the ratcheting accumulation of both volumetric and deviatoric deformation caused by repeated drained loading over a large number of cycles.