Based on the equations of motion and the assumption that ocean turbulence is of isotropy or quasi-isotropy, we derived the closure equations of the second-order moments and the variation equations for characteristic q...Based on the equations of motion and the assumption that ocean turbulence is of isotropy or quasi-isotropy, we derived the closure equations of the second-order moments and the variation equations for characteristic quantities, which describe the mechanisms of advection transport and shear instability by the sum of wave-like and eddy-like motions and circulation. Given that ocean turbulence generated by wave breaking is dominant at the ocean surface, we presented the boundary conditions of the turbulence kinetic energy and its dissipation rate, which are determined by energy loss from wave breaking and entrainment depth respectively. According to the equilibrium solution of the variation equations and available data of the dissipation rate, we obtained an analytical estimation of the characteristic quantities of surface-wave-generated turbulence in the upper ocean and its related mixing coefficient. The derived kinetic dissipation rate was validated by field measurements qualitatively and quantitatively, and the mixing coefficient had fairly good consistency with previous results based on the Prandtl mixing length theory.展开更多
As a follow-up research of the work on the natural viscosity of turbulence of Huang et al. [Journal of Turbulence(2003)], here we investigate the thixotropic effect of a turbulent Newtonian fluid on the basis of the e...As a follow-up research of the work on the natural viscosity of turbulence of Huang et al. [Journal of Turbulence(2003)], here we investigate the thixotropic effect of a turbulent Newtonian fluid on the basis of the ensemble-averaged Navier–Stokes equation. In view of the natural viscosity, we show that in homogeneous isotropic turbulence the turbulent Newtonian fluid behaves like a thixotropic fluid, exhibiting the thixotropic effect with its natural viscosity decreasing with time.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos. 40776020, 41106032 and 40531005)National Basic Research Program of China (Grant Nos. G1999043800, 2006CB403600,2010CB950300 and 2010CB950404)
文摘Based on the equations of motion and the assumption that ocean turbulence is of isotropy or quasi-isotropy, we derived the closure equations of the second-order moments and the variation equations for characteristic quantities, which describe the mechanisms of advection transport and shear instability by the sum of wave-like and eddy-like motions and circulation. Given that ocean turbulence generated by wave breaking is dominant at the ocean surface, we presented the boundary conditions of the turbulence kinetic energy and its dissipation rate, which are determined by energy loss from wave breaking and entrainment depth respectively. According to the equilibrium solution of the variation equations and available data of the dissipation rate, we obtained an analytical estimation of the characteristic quantities of surface-wave-generated turbulence in the upper ocean and its related mixing coefficient. The derived kinetic dissipation rate was validated by field measurements qualitatively and quantitatively, and the mixing coefficient had fairly good consistency with previous results based on the Prandtl mixing length theory.
文摘As a follow-up research of the work on the natural viscosity of turbulence of Huang et al. [Journal of Turbulence(2003)], here we investigate the thixotropic effect of a turbulent Newtonian fluid on the basis of the ensemble-averaged Navier–Stokes equation. In view of the natural viscosity, we show that in homogeneous isotropic turbulence the turbulent Newtonian fluid behaves like a thixotropic fluid, exhibiting the thixotropic effect with its natural viscosity decreasing with time.