In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.T...In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.展开更多
This paper presents an analytical solution to the unsteady flow of the second-order non-Newtonian fluids by the use of intergral transformation method. Based on the numerical results, the effect of non-Newtonian coeff...This paper presents an analytical solution to the unsteady flow of the second-order non-Newtonian fluids by the use of intergral transformation method. Based on the numerical results, the effect of non-Newtonian coefficient Hc and other parameters on the flow are analysed. It is shown that the annular flow has a shorter characteristic time than the general pipe flow while the correspondent velocity, average velocity have a ... nailer value for a given Hc. Else, when radii ratio keeps unchanged, the shear stress of inner wall of annular flow will change with the inner radius -compared with the general pipe flow and is always smaller than that of the outer wall.展开更多
基金supported by the National Key Research and Development Program of China under Grant 2023YFB2407400。
文摘In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.
文摘This paper presents an analytical solution to the unsteady flow of the second-order non-Newtonian fluids by the use of intergral transformation method. Based on the numerical results, the effect of non-Newtonian coefficient Hc and other parameters on the flow are analysed. It is shown that the annular flow has a shorter characteristic time than the general pipe flow while the correspondent velocity, average velocity have a ... nailer value for a given Hc. Else, when radii ratio keeps unchanged, the shear stress of inner wall of annular flow will change with the inner radius -compared with the general pipe flow and is always smaller than that of the outer wall.