This paper investigates the existence of solutions of periodic boundary value problems for nonlinear second order functional differential equations. By establishing comparison results, criteria on the existence of max...This paper investigates the existence of solutions of periodic boundary value problems for nonlinear second order functional differential equations. By establishing comparison results, criteria on the existence of maximal and minimal solutions are obtained.展开更多
利用重合度理论,获得了一类具有多个偏差变元的二阶中立型泛函微分方程(d^2)/(dt^2)(u(t)-(sum from j=1 to n)c_ju(t-r_j))=f(u(t))u′(t)+α(t)g(u(t))+(sum from j=1 to n)β_j(t)g(u(t-γ_j(t)))+p(t)周期解存在性的新的充分条件,...利用重合度理论,获得了一类具有多个偏差变元的二阶中立型泛函微分方程(d^2)/(dt^2)(u(t)-(sum from j=1 to n)c_ju(t-r_j))=f(u(t))u′(t)+α(t)g(u(t))+(sum from j=1 to n)β_j(t)g(u(t-γ_j(t)))+p(t)周期解存在性的新的充分条件,改进了已有文献的相关结果.展开更多
利用叠合度理论研究了一类时标上的二阶中立型泛函微分方程,得到方程(x(t)-c(t)x(t-T))△△=-a(t)f(x(t))△(t)-Σ i=1nbi(t)gi(t,x(t-Ti(t)))周期解存在的条件,其中a,bi和,TiC(T,R)都是w-周期函数T是常时滞且T﹥0, c (t )C2(T,R),...利用叠合度理论研究了一类时标上的二阶中立型泛函微分方程,得到方程(x(t)-c(t)x(t-T))△△=-a(t)f(x(t))△(t)-Σ i=1nbi(t)gi(t,x(t-Ti(t)))周期解存在的条件,其中a,bi和,TiC(T,R)都是w-周期函数T是常时滞且T﹥0, c (t )C2(T,R), 0 ≤c(t)〈1, g iC(T* R, R +), i =1,2, ...,,n关于第一个分量是w-周期函数,关于第二个分量是非减的,c(t)C2(T,R)。展开更多
基金Supported by NNSF-China (No.10071043)the YNSF of Shandong Province (No.Y2000A06)
文摘This paper investigates the existence of solutions of periodic boundary value problems for nonlinear second order functional differential equations. By establishing comparison results, criteria on the existence of maximal and minimal solutions are obtained.
文摘利用重合度理论,获得了一类具有多个偏差变元的二阶中立型泛函微分方程(d^2)/(dt^2)(u(t)-(sum from j=1 to n)c_ju(t-r_j))=f(u(t))u′(t)+α(t)g(u(t))+(sum from j=1 to n)β_j(t)g(u(t-γ_j(t)))+p(t)周期解存在性的新的充分条件,改进了已有文献的相关结果.
文摘利用叠合度理论研究了一类时标上的二阶中立型泛函微分方程,得到方程(x(t)-c(t)x(t-T))△△=-a(t)f(x(t))△(t)-Σ i=1nbi(t)gi(t,x(t-Ti(t)))周期解存在的条件,其中a,bi和,TiC(T,R)都是w-周期函数T是常时滞且T﹥0, c (t )C2(T,R), 0 ≤c(t)〈1, g iC(T* R, R +), i =1,2, ...,,n关于第一个分量是w-周期函数,关于第二个分量是非减的,c(t)C2(T,R)。