期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进二阶循环平稳解卷积的轴承故障检测方法 被引量:12
1
作者 罗忠 徐迪 +1 位作者 李雷 马辉 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第5期673-678,共6页
针对涡轴发动机主轴轴承故障特征难以提取,背景噪声干扰大的问题,提出了改进二阶循环平稳解卷积(PSO-CYCBD)方法,用于提取强噪声背景下的故障特征频率.该方法采用粒子群优化(PSO)算法对二阶循环平稳解卷积(CYCBD)方法中的滤波器长度参... 针对涡轴发动机主轴轴承故障特征难以提取,背景噪声干扰大的问题,提出了改进二阶循环平稳解卷积(PSO-CYCBD)方法,用于提取强噪声背景下的故障特征频率.该方法采用粒子群优化(PSO)算法对二阶循环平稳解卷积(CYCBD)方法中的滤波器长度参数进行寻优.首先,基于故障轴承振动特点建立信号模型,然后用PSO算法对包络谱故障特征比(FFR)进行最大化处理,将得到的最优滤波器长度参数输入到CYCBD方法中,对滤波后的信号进行包络谱分析,提取故障特征频率.最后,将提出的方法应用于实测信号中,与传统包络谱分析相比提高了故障特征提取的效率和准确性,从而验证了该方法的有效性. 展开更多
关键词 故障诊断 涡轴发动机主轴轴承 粒子群优化 二阶循环平稳解卷积
下载PDF
一种基于增强型最大二阶循环平稳盲解卷积的齿轮箱复合故障诊断 被引量:3
2
作者 齐咏生 单成成 +2 位作者 贾舜宇 刘利强 董朝轶 《中国机械工程》 EI CAS CSCD 北大核心 2022年第24期2927-2941,2952,共16页
针对齿轮箱复合故障振动信号易受到背景噪声干扰,使得传统方法对复合故障冲击特征难以准确分离的问题,提出一种自适应最大二阶循环平稳盲解卷积(ACYCBD)与1.5维导数增强谱相结合的复合故障诊断方法。首先,利用循环谱分析检测复合故障振... 针对齿轮箱复合故障振动信号易受到背景噪声干扰,使得传统方法对复合故障冲击特征难以准确分离的问题,提出一种自适应最大二阶循环平稳盲解卷积(ACYCBD)与1.5维导数增强谱相结合的复合故障诊断方法。首先,利用循环谱分析检测复合故障振动信号中与故障特征相关的循环频率成分,构建不同目标类型的循环频率集;之后,根据不同类型的循环频率集,提出一种以三阶累积量稀疏度(TCS)为指标,自适应地选取最大二阶循环平稳盲解卷积(CYCBD)的最优滤波器长度的改进算法,从而更好地获得包含不同故障冲击成分的CYCBD最优滤波信号;最后,提出一种新的1.5维导数谱进行特征增强,提高信噪比,并分析谱图中突出的故障特征频率进而判别故障类型。通过仿真信号与故障实验平台数据对算法进行验证,结果表明该方法能够实现齿轮箱复合故障的准确分离与诊断。 展开更多
关键词 齿轮箱 复合故障 循环谱分析 最大二阶循环平稳盲解卷积 1.5维导数谱
下载PDF
CYCBD和CEEMDAN相结合的滚动轴承微小故障特征提取 被引量:3
3
作者 梁士通 马洁 《机床与液压》 北大核心 2022年第2期172-177,共6页
针对强噪声下微小故障信号容易被噪声淹没的问题,提出基于最大二阶循环平稳盲解卷积(CYCBD)和自适应噪声完全集合经验模态分解(CEEMDAN)的轴承微小故障诊断方法。根据故障频率公式求出振动信号的故障频率,并根据故障频率设置对应的循环... 针对强噪声下微小故障信号容易被噪声淹没的问题,提出基于最大二阶循环平稳盲解卷积(CYCBD)和自适应噪声完全集合经验模态分解(CEEMDAN)的轴承微小故障诊断方法。根据故障频率公式求出振动信号的故障频率,并根据故障频率设置对应的循环频率集,用CYCBD对原信号进行滤波,使信号中的周期冲击成分更加突出,从而达到提高信噪比的目的;对处理后的信号进行CEEMDAN,得到一系列模态分量,再求各模态分量的峭度值,从中选取峭度值高的即含有较多故障特征的若干分量进行重构;对重构后的信号求其Hilbert包络谱,从中提取故障频率。采用仿真信号与西储大学轴承数据集进行仿真与实验研究,验证所提方法的有效性。 展开更多
关键词 微小故障 最大二阶循环平稳盲解卷积 自适应噪声完全集合经验模态分解 特征提取
下载PDF
基于FIF-CYCBD的滚动轴承故障特征提取方法研究 被引量:1
4
作者 刘洋 李凌均 +2 位作者 王宇 王钧铄 曹亚磊 《郑州大学学报(工学版)》 CAS 北大核心 2022年第4期35-40,共6页
针对滚动轴承所处工况复杂、提取故障特征困难的问题,提出了一种基于快速迭代滤波分解(FIF)和最大二阶循环平稳盲解卷积(CYCBD)的故障特征提取方法。首先,通过利用FIF方法对源信号进行自适应分解,得到一系列本征模态分量;其次,依据相关... 针对滚动轴承所处工况复杂、提取故障特征困难的问题,提出了一种基于快速迭代滤波分解(FIF)和最大二阶循环平稳盲解卷积(CYCBD)的故障特征提取方法。首先,通过利用FIF方法对源信号进行自适应分解,得到一系列本征模态分量;其次,依据相关系数准则对和源信号相关系数大于0.6的分量进行重构,并根据FIF得到的分解结果设置合适的循环频率采集器;最后,利用CYCBD方法对重构后的信号进行解混去噪,对处理后的信号进行包络解调分析。仿真实验以及相关实验数据表明,所提方法具有良好的信噪分离效果,相较于信号中突出的噪声分量,处理得到的故障特征频率幅值高于噪声幅值,可以有效实现轴承故障频率及其倍频特征的提取。 展开更多
关键词 快速迭代滤波分解(FIF) 最大二阶循环平稳盲解卷积(cycbd) 滚动轴承 特征提取 循环频率
下载PDF
Infogram和参数优化CYCBD在滚动轴承复合故障特征分离中的应用 被引量:1
5
作者 刘桂敏 吴建德 +1 位作者 李卓睿 李祥 《振动与冲击》 EI CSCD 北大核心 2022年第10期55-65,共11页
针对滚动轴承复合故障特征难以分离的问题,提出了一种基于Infogram和参数优化最大二阶循环平稳盲解卷积(maximum second-order cyclostationarity blind deconvolution,CYCBD)的复合故障特征分离方法。首先,采用Infogram方法分析故障信... 针对滚动轴承复合故障特征难以分离的问题,提出了一种基于Infogram和参数优化最大二阶循环平稳盲解卷积(maximum second-order cyclostationarity blind deconvolution,CYCBD)的复合故障特征分离方法。首先,采用Infogram方法分析故障信号,选取最优带通滤波器,获得冲击性和循环平稳性最强的频带信号;其次,根据理论故障频率,设定CYCBD的循环频率集,并以包络谱稀疏度为依据,自适应选择CYCBD的滤波器长度;再次,对获得的频带信号进行解卷积运算,提取不同频率的故障冲击成分,实现故障分离;最后,对分离出的各故障成分进行包络解调分析,根据故障特征频率,识别故障类型。通过对仿真信号、西安交大-昇阳科技联合实验室(Xi’an Jiaotong University-Changxing Sumyoung Technology,XJTU-SY)的轴承试验数据分析,证明了所提方法可以有效实现故障特征分离。在此基础上,通过自制试验平台实测数据,进一步论证了该方法的可行性。 展开更多
关键词 复合故障 Infogram 最大二阶循环平稳盲解卷积(cycbd) 包络谱稀疏度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部