In this paper, we define a kind of new Sobolev spaces, the relative Sobolev spaces Wk,p0(Ω,∑). Then an elliptic partial differential equation of the second order with an ill-posed boundary is discussed. By utilizing...In this paper, we define a kind of new Sobolev spaces, the relative Sobolev spaces Wk,p0(Ω,∑). Then an elliptic partial differential equation of the second order with an ill-posed boundary is discussed. By utilizing the ideal of the generalized inverse of an operator, we introduce the generalized solution of the ill-posed boundary problem. Eventually, the connection between the generalized inverse and the generalized solution is studied. In this way, the non-instability of the minimal normal least square solution of the ill-posed boundary problem is avoided.展开更多
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v,...In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v, nonincreasing on v for each x,u; there exists a constant q∈(0,1) such that t qf(x,t -1 u,tu)f(x,u,u)λ qf(x,λ -1 u,λu),0<t<1<λ, u∈R +. Then a necessary and sufficient condition for the equation u″+f(x,u,u)=0 on the boundary condition αu(a)-βu′(a)=0, γ(b)+δu′(b)=0 to have C 1(I) nonzero solutions is that 0<∫ b af(x,e(x),e(x))dx<∞, where α,β,γ,δ are nonnegative real numbers, Δ=(b-a)αγ+αδ+βγ>0, e(x)=G(x,x), G(x,y) is Green's function of above mentioned boundary value problem (when f(x,u,v)≡0). Received September 9,1996. Revised March 31,1997. 1991 MR Subject Classification: 34B.展开更多
By employing the fixed point theorem of cone expansion and compression of norm type, we investigate the existence of positive solutions of generalized Sturm-Liouville boundary value problems for a nonlinear singular d...By employing the fixed point theorem of cone expansion and compression of norm type, we investigate the existence of positive solutions of generalized Sturm-Liouville boundary value problems for a nonlinear singular differential equation with a parameter. Some sufficient conditions for the existence of positive solutions are established. In the last section, an example is presented to illustrate the applications of our main results.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.10171087)the Science Foundation of Jiangsu Province(Grant No.01KJD110010).
文摘In this paper, we define a kind of new Sobolev spaces, the relative Sobolev spaces Wk,p0(Ω,∑). Then an elliptic partial differential equation of the second order with an ill-posed boundary is discussed. By utilizing the ideal of the generalized inverse of an operator, we introduce the generalized solution of the ill-posed boundary problem. Eventually, the connection between the generalized inverse and the generalized solution is studied. In this way, the non-instability of the minimal normal least square solution of the ill-posed boundary problem is avoided.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
文摘In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v, nonincreasing on v for each x,u; there exists a constant q∈(0,1) such that t qf(x,t -1 u,tu)f(x,u,u)λ qf(x,λ -1 u,λu),0<t<1<λ, u∈R +. Then a necessary and sufficient condition for the equation u″+f(x,u,u)=0 on the boundary condition αu(a)-βu′(a)=0, γ(b)+δu′(b)=0 to have C 1(I) nonzero solutions is that 0<∫ b af(x,e(x),e(x))dx<∞, where α,β,γ,δ are nonnegative real numbers, Δ=(b-a)αγ+αδ+βγ>0, e(x)=G(x,x), G(x,y) is Green's function of above mentioned boundary value problem (when f(x,u,v)≡0). Received September 9,1996. Revised March 31,1997. 1991 MR Subject Classification: 34B.
基金Supported by the National Natural Science Foundation of China (Grant No.10971046)the Natural Science Research Project of Anhui Province (Grant No.KJ2009B093)+1 种基金the Natural Science Foundation of Shandong Province(Grant No.ZR2009AM004)the Research Project of Bozhou Teachers College (Grant No.BSKY0805)
文摘By employing the fixed point theorem of cone expansion and compression of norm type, we investigate the existence of positive solutions of generalized Sturm-Liouville boundary value problems for a nonlinear singular differential equation with a parameter. Some sufficient conditions for the existence of positive solutions are established. In the last section, an example is presented to illustrate the applications of our main results.