Electronic medical records (EMR) facilitate the sharing of medical data, but existing sharing schemes suffer fromprivacy leakage and inefficiency. This article proposes a lightweight, searchable, and controllable EMR ...Electronic medical records (EMR) facilitate the sharing of medical data, but existing sharing schemes suffer fromprivacy leakage and inefficiency. This article proposes a lightweight, searchable, and controllable EMR sharingscheme, which employs a large attribute domain and a linear secret sharing structure (LSSS), the computationaloverhead of encryption and decryption reaches a lightweight constant level, and supports keyword search andpolicy hiding, which improves the high efficiency of medical data sharing. The dynamic accumulator technologyis utilized to enable data owners to flexibly authorize or revoke the access rights of data visitors to the datato achieve controllability of the data. Meanwhile, the data is re-encrypted by Intel Software Guard Extensions(SGX) technology to realize resistance to offline dictionary guessing attacks. In addition, blockchain technology isutilized to achieve credible accountability for abnormal behaviors in the sharing process. The experiments reflectthe obvious advantages of the scheme in terms of encryption and decryption computation overhead and storageoverhead, and theoretically prove the security and controllability in the sharing process, providing a feasible solutionfor the safe and efficient sharing of EMR.展开更多
针对非结构化P2P搜索机制不够灵活、不能有效解决跨域文件搜索的问题,提出一种基于兴趣域的非结构化P2P动态搜索算法。此算法根据每个节点共享的文件类型的差异,将网络进行分域,在分域的基础上利用预算值和TTL(time to live)值来控制搜...针对非结构化P2P搜索机制不够灵活、不能有效解决跨域文件搜索的问题,提出一种基于兴趣域的非结构化P2P动态搜索算法。此算法根据每个节点共享的文件类型的差异,将网络进行分域,在分域的基础上利用预算值和TTL(time to live)值来控制搜索节点的数目和搜索的深度,对不同类型的搜索采用不同的搜索策略。实验表明,该搜索算法的节点覆盖率在50%左右,搜索效率保持在35%左右,即算法能够有效地满足用户的查询需求,效率比较稳定且高于当前典型的搜索算法。展开更多
The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem(JSP).However,due to the unique nature of the JSP,local search may generate infeasible neighbourhood solutions.I...The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem(JSP).However,due to the unique nature of the JSP,local search may generate infeasible neighbourhood solutions.In the existing literature,although some domain knowledge of the JSP can be used to avoid infeasible solutions,the constraint conditions in this domain knowledge are sufficient but not necessary.It may lose many feasible solutions and make the local search inadequate.By analysing the causes of infeasible neighbourhood solutions,this paper further explores the domain knowledge contained in the JSP and proposes the sufficient and necessary constraint conditions to find all feasible neighbourhood solutions,allowing the local search to be carried out thoroughly.With the proposed conditions,a new neighbourhood structure is designed in this paper.Then,a fast calculation method for all feasible neighbourhood solutions is provided,significantly reducing the calculation time compared with ordinary methods.A set of standard benchmark instances is used to evaluate the performance of the proposed neighbourhood structure and calculation method.The experimental results show that the calculation method is effective,and the new neighbourhood structure has more reliability and superiority than the other famous and influential neighbourhood structures,where 90%of the results are the best compared with three other well-known neighbourhood structures.Finally,the result from a tabu search algorithm with the new neighbourhood structure is compared with the current best results,demonstrating the superiority of the proposed neighbourhood structure.展开更多
This work is dedicated to formation of data warehouse for processing of a large volume of registration data of domain names. Data cleaning is applied in order to increase the effectiveness of decision making support. ...This work is dedicated to formation of data warehouse for processing of a large volume of registration data of domain names. Data cleaning is applied in order to increase the effectiveness of decision making support. Data cleaning is ap- plied in warehouses for detection and deletion of errors, discrepancy in data in order to improve their quality. For this purpose, fuzzy record comparison algorithms are for clearing of registration data of domain names reviewed in this work. Also, identification method of domain names registration data for data warehouse formation is proposed. Deci- sion making algorithms for identification of registration data are implemented in DRRacket and Python.展开更多
In this paper,we investigate a parallel subspace correction framework for composite convex optimization.The variables are first divided into a few blocks based on certain rules.At each iteration,the algorithms solve a...In this paper,we investigate a parallel subspace correction framework for composite convex optimization.The variables are first divided into a few blocks based on certain rules.At each iteration,the algorithms solve a suitable subproblem on each block simultaneously,construct a search direction by combining their solutions on all blocks,then identify a new point along this direction using a step size satisfying the Armijo line search condition.They are called PSCLN and PSCLO,respectively,depending on whether there are overlapping regions between two imme-diately adjacent blocks of variables.Their convergence is established under mild assumptions.We compare PSCLN and PSCLO with the parallel version of the fast iterative thresholding algorithm and the fixed-point continuation method using the Barzilai-Borwein step size and the greedy coordinate block descent method for solving the l1-regularized minimization problems.Our numerical results showthatPSCLN andPSCLOcan run fast and return solutions notworse than those from the state-of-theart algorithms on most test problems.It is also observed that the overlapping domain decomposition scheme is helpful when the data of the problem has certain special structures.展开更多
基金the Natural Science Foundation of Hebei Province under Grant Number F2021201052.
文摘Electronic medical records (EMR) facilitate the sharing of medical data, but existing sharing schemes suffer fromprivacy leakage and inefficiency. This article proposes a lightweight, searchable, and controllable EMR sharingscheme, which employs a large attribute domain and a linear secret sharing structure (LSSS), the computationaloverhead of encryption and decryption reaches a lightweight constant level, and supports keyword search andpolicy hiding, which improves the high efficiency of medical data sharing. The dynamic accumulator technologyis utilized to enable data owners to flexibly authorize or revoke the access rights of data visitors to the datato achieve controllability of the data. Meanwhile, the data is re-encrypted by Intel Software Guard Extensions(SGX) technology to realize resistance to offline dictionary guessing attacks. In addition, blockchain technology isutilized to achieve credible accountability for abnormal behaviors in the sharing process. The experiments reflectthe obvious advantages of the scheme in terms of encryption and decryption computation overhead and storageoverhead, and theoretically prove the security and controllability in the sharing process, providing a feasible solutionfor the safe and efficient sharing of EMR.
文摘针对非结构化P2P搜索机制不够灵活、不能有效解决跨域文件搜索的问题,提出一种基于兴趣域的非结构化P2P动态搜索算法。此算法根据每个节点共享的文件类型的差异,将网络进行分域,在分域的基础上利用预算值和TTL(time to live)值来控制搜索节点的数目和搜索的深度,对不同类型的搜索采用不同的搜索策略。实验表明,该搜索算法的节点覆盖率在50%左右,搜索效率保持在35%左右,即算法能够有效地满足用户的查询需求,效率比较稳定且高于当前典型的搜索算法。
基金Supported by National Natural Science Foundation of China(Grant Nos.U21B2029 and 51825502).
文摘The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem(JSP).However,due to the unique nature of the JSP,local search may generate infeasible neighbourhood solutions.In the existing literature,although some domain knowledge of the JSP can be used to avoid infeasible solutions,the constraint conditions in this domain knowledge are sufficient but not necessary.It may lose many feasible solutions and make the local search inadequate.By analysing the causes of infeasible neighbourhood solutions,this paper further explores the domain knowledge contained in the JSP and proposes the sufficient and necessary constraint conditions to find all feasible neighbourhood solutions,allowing the local search to be carried out thoroughly.With the proposed conditions,a new neighbourhood structure is designed in this paper.Then,a fast calculation method for all feasible neighbourhood solutions is provided,significantly reducing the calculation time compared with ordinary methods.A set of standard benchmark instances is used to evaluate the performance of the proposed neighbourhood structure and calculation method.The experimental results show that the calculation method is effective,and the new neighbourhood structure has more reliability and superiority than the other famous and influential neighbourhood structures,where 90%of the results are the best compared with three other well-known neighbourhood structures.Finally,the result from a tabu search algorithm with the new neighbourhood structure is compared with the current best results,demonstrating the superiority of the proposed neighbourhood structure.
文摘This work is dedicated to formation of data warehouse for processing of a large volume of registration data of domain names. Data cleaning is applied in order to increase the effectiveness of decision making support. Data cleaning is ap- plied in warehouses for detection and deletion of errors, discrepancy in data in order to improve their quality. For this purpose, fuzzy record comparison algorithms are for clearing of registration data of domain names reviewed in this work. Also, identification method of domain names registration data for data warehouse formation is proposed. Deci- sion making algorithms for identification of registration data are implemented in DRRacket and Python.
基金Qian Dong was supported in part by the National Natural Science Foundation of China(Nos.11331012,11321061 and 11461161005)Xin Liu was supported in part by the National Natural Science Foundation of China(Nos.11101409,11331012,11471325 and 11461161005)+3 种基金China 863 Program(No.2013AA122902)the National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of SciencesZai-Wen Wen was supported in part by the National Natural Science Foundation of China(Nos.11322109 and 91330202)Ya-Xiang Yuan was supported in part by the National Natural Science Foundation of China(Nos.11331012,11321061 and 11461161005).
文摘In this paper,we investigate a parallel subspace correction framework for composite convex optimization.The variables are first divided into a few blocks based on certain rules.At each iteration,the algorithms solve a suitable subproblem on each block simultaneously,construct a search direction by combining their solutions on all blocks,then identify a new point along this direction using a step size satisfying the Armijo line search condition.They are called PSCLN and PSCLO,respectively,depending on whether there are overlapping regions between two imme-diately adjacent blocks of variables.Their convergence is established under mild assumptions.We compare PSCLN and PSCLO with the parallel version of the fast iterative thresholding algorithm and the fixed-point continuation method using the Barzilai-Borwein step size and the greedy coordinate block descent method for solving the l1-regularized minimization problems.Our numerical results showthatPSCLN andPSCLOcan run fast and return solutions notworse than those from the state-of-theart algorithms on most test problems.It is also observed that the overlapping domain decomposition scheme is helpful when the data of the problem has certain special structures.