This study analyzed the changes in precipita- tion over summer and autumn across the Yunnan region of China, and undertook a composite analysis of the atmo- spheric circulations in the troposphere, which included an a...This study analyzed the changes in precipita- tion over summer and autumn across the Yunnan region of China, and undertook a composite analysis of the atmo- spheric circulations in the troposphere, which included an analysis of the interannual and interdecadal variations. This paper examines in detail the circulation backgrounds of the wet and dry periods in summer and autumn and their correlations with the sea surface temperature. The results indicated that the summer and autumn precipitation across Yunnan has significantly decreased over the past 50 years. Furthermore, since the beginning of the century, the summer and autumn precipitation cycle has been in a low precipitation phase. The overlap of two extremely low rain phases has caused frequent droughts in the region. In addition, the atmospheric circulation fields during these wet and dry periods are very different. These are mainly shown as a meridional wind anomaly in eastern China in the low atmosphere, as a cross-equatorial airflow anomaly, a tropical zonal wind anomaly over the Indian Ocean, and as a related South Asia High and Western Pacific Subtropical High. Further analysis suggested that the SST over the Indian Ocean and the Pacific warm pool critically affect the anomalous summer and autumn precipitation over Yunnan by impacting the monsoon circulations. Future projections for greenhouse gas wann- ing suggest a potential anomalous circulation background between 2010 and 2020 which may result in less precipitation during the wet season or even drought events across the Yunnan region.展开更多
The curved surface of the maximum sea temperature anomaly (MSTA) was created from the JEDAC subsurface sea temperature anomaly data at the tropical Pacific between 1955 and 2000. It is quite similar to the depth distr...The curved surface of the maximum sea temperature anomaly (MSTA) was created from the JEDAC subsurface sea temperature anomaly data at the tropical Pacific between 1955 and 2000. It is quite similar to the depth distribution of the 20℃ isotherm, which is usually the replacement of thermocline. From the distribution and moving trajectory of positive or negative sea temperature anomalies (STA) on the curved surface we analyzed all the El Nino and La Nina events since the later 1960s. Based on the analyses we found that, using the subsurface warm pool as the beginning point, the warm or cold signal propagates initially eastward and upward along the equatorial curved surface of MSTA to the eastern Pacific and stays there several months and then to (urn north, usually moving westward near 10°N to western Pacific and finally propagates southward to return to warm pool to form an off-equator closed circuit. It takes about 2 to 4 years for the temperature anomaly to move around the cycle. If the STA of warm (cold) water is strong enough, there will be two successive El Nino (La Nina) events during the period of 2 to 4 years. Sometime, it becomes weak in motion due to the unsuitable oceanic or atmospheric condition. This kind process may not be considered as an El Nino ( La Nina) event, but the moving trajectory of warm (cold) water can still be recognized. Because of the alternate between warm and cold water around the circuits, the positive (negative) anomaly signal in equatorial western Pacific coexists with negative (positive) anomaly signal near 10°N in eastern Pacific before the outbreak of El Nino (La Nina) event. The signals move in the opposite directions. So it appears as El Nino (La Nina) in equator at 2-4 years intervals. The paper also analyzed several exceptional cases and discussed the effect and importance of oceanic circulation in the evolution of El Nino/ La Nina event.展开更多
太阳活动对全球气候的影响一直是人们关心的热门话题,尤其是太阳活动对海温和降水的影响吸引更多学者的目光.本文通过研究全球0~700 m海温对太阳射电通量(Solar Radio Flux,缩写为SRF)的响应,发现全球海温对太阳活动响应具有空间分布不...太阳活动对全球气候的影响一直是人们关心的热门话题,尤其是太阳活动对海温和降水的影响吸引更多学者的目光.本文通过研究全球0~700 m海温对太阳射电通量(Solar Radio Flux,缩写为SRF)的响应,发现全球海温对太阳活动响应具有空间分布不均匀性特征,显著响应的地区集中在太平洋和南大西洋,显著响应的层次主要在0~200 m.利用响应太阳活动显著区域的海温资料,定义一个响应太阳活动的海温异常指数,研究该指数与同期和滞后1年全球冬夏季降水的相关分布,发现指数高时夏季热带中太平洋降水增多,南北半球中高纬地区降水增加,呈带状分布,南极地区降水显著减少;我国江南东部地区、青藏高原和山东半岛降水减少.冬季热带中部太平洋和东南太平洋地区降水增多,赤道西太平洋降水明显偏少,北极地区降水显著偏多,热带西太平洋和孟加拉湾降水减少,南北两个半球中高纬度地区降水增多;我国华南地区广西和广东西部、海南一带降水增多,东北地区降水减少,青藏高原地区降水显著增加.当海温异常指数低时,情况相反.研究结果表明,海温异常通过影响降水放大了太阳活动的作用.由此推测,在考虑夏季降水的预测问题时,由太阳活动引起的太平洋和大西洋海温异常对降水的影响应该引起重视.展开更多
基金This research was supported by the National Natural Science Foundation of China (Grant Nos. 41175051 and 41101045), and the National Science Foundation of China-Yunnan Province Joint Grant (U1133603).
文摘This study analyzed the changes in precipita- tion over summer and autumn across the Yunnan region of China, and undertook a composite analysis of the atmo- spheric circulations in the troposphere, which included an analysis of the interannual and interdecadal variations. This paper examines in detail the circulation backgrounds of the wet and dry periods in summer and autumn and their correlations with the sea surface temperature. The results indicated that the summer and autumn precipitation across Yunnan has significantly decreased over the past 50 years. Furthermore, since the beginning of the century, the summer and autumn precipitation cycle has been in a low precipitation phase. The overlap of two extremely low rain phases has caused frequent droughts in the region. In addition, the atmospheric circulation fields during these wet and dry periods are very different. These are mainly shown as a meridional wind anomaly in eastern China in the low atmosphere, as a cross-equatorial airflow anomaly, a tropical zonal wind anomaly over the Indian Ocean, and as a related South Asia High and Western Pacific Subtropical High. Further analysis suggested that the SST over the Indian Ocean and the Pacific warm pool critically affect the anomalous summer and autumn precipitation over Yunnan by impacting the monsoon circulations. Future projections for greenhouse gas wann- ing suggest a potential anomalous circulation background between 2010 and 2020 which may result in less precipitation during the wet season or even drought events across the Yunnan region.
基金This work was supported by the National Natural Science Foundation of China under Grant No.40126002.
文摘The curved surface of the maximum sea temperature anomaly (MSTA) was created from the JEDAC subsurface sea temperature anomaly data at the tropical Pacific between 1955 and 2000. It is quite similar to the depth distribution of the 20℃ isotherm, which is usually the replacement of thermocline. From the distribution and moving trajectory of positive or negative sea temperature anomalies (STA) on the curved surface we analyzed all the El Nino and La Nina events since the later 1960s. Based on the analyses we found that, using the subsurface warm pool as the beginning point, the warm or cold signal propagates initially eastward and upward along the equatorial curved surface of MSTA to the eastern Pacific and stays there several months and then to (urn north, usually moving westward near 10°N to western Pacific and finally propagates southward to return to warm pool to form an off-equator closed circuit. It takes about 2 to 4 years for the temperature anomaly to move around the cycle. If the STA of warm (cold) water is strong enough, there will be two successive El Nino (La Nina) events during the period of 2 to 4 years. Sometime, it becomes weak in motion due to the unsuitable oceanic or atmospheric condition. This kind process may not be considered as an El Nino ( La Nina) event, but the moving trajectory of warm (cold) water can still be recognized. Because of the alternate between warm and cold water around the circuits, the positive (negative) anomaly signal in equatorial western Pacific coexists with negative (positive) anomaly signal near 10°N in eastern Pacific before the outbreak of El Nino (La Nina) event. The signals move in the opposite directions. So it appears as El Nino (La Nina) in equator at 2-4 years intervals. The paper also analyzed several exceptional cases and discussed the effect and importance of oceanic circulation in the evolution of El Nino/ La Nina event.
文摘太阳活动对全球气候的影响一直是人们关心的热门话题,尤其是太阳活动对海温和降水的影响吸引更多学者的目光.本文通过研究全球0~700 m海温对太阳射电通量(Solar Radio Flux,缩写为SRF)的响应,发现全球海温对太阳活动响应具有空间分布不均匀性特征,显著响应的地区集中在太平洋和南大西洋,显著响应的层次主要在0~200 m.利用响应太阳活动显著区域的海温资料,定义一个响应太阳活动的海温异常指数,研究该指数与同期和滞后1年全球冬夏季降水的相关分布,发现指数高时夏季热带中太平洋降水增多,南北半球中高纬地区降水增加,呈带状分布,南极地区降水显著减少;我国江南东部地区、青藏高原和山东半岛降水减少.冬季热带中部太平洋和东南太平洋地区降水增多,赤道西太平洋降水明显偏少,北极地区降水显著偏多,热带西太平洋和孟加拉湾降水减少,南北两个半球中高纬度地区降水增多;我国华南地区广西和广东西部、海南一带降水增多,东北地区降水减少,青藏高原地区降水显著增加.当海温异常指数低时,情况相反.研究结果表明,海温异常通过影响降水放大了太阳活动的作用.由此推测,在考虑夏季降水的预测问题时,由太阳活动引起的太平洋和大西洋海温异常对降水的影响应该引起重视.