A new parameterization scheme of sea surface momentum roughness length for all wind regimes, including high winds, under tropical cyclone (TC) conditions is constructed based on measurements from Global Positioning ...A new parameterization scheme of sea surface momentum roughness length for all wind regimes, including high winds, under tropical cyclone (TC) conditions is constructed based on measurements from Global Positioning System (GPS) dropsonde. It reproduces the observed regime transition, namely, an increase of the drag coefficient with an increase in wind speed up to 40 m s-1 , followed by a decrease with a further increase in wind speed. The effect of this parameterization on the structure and intensity of TCs is evaluated using a newly developed numerical model, TCM4. The results show that the final intensity is increased by 10.5% (8.9%) in the maximum surface wind speed and by 8.1 hPa (5.9 hPa) in the minimum sea surface pressure drop with (without) dissipative heating. This intensity increase is found to be due mainly to the reduced frictional dissipation in the surface layer and little to do with either the surface enthalpy flux or latent heat release in the eyewall convection. The effect of the new parameterization on the storm structure is found to be insignificant and occurs only in the inner core region with the increase in tangential winds in the eyewall and the increase in temperature anomalies in the eye. This is because the difference in drag coefficient appears only in a small area under the eyewall. Implications of the results are briefly discussed.展开更多
The parameterization of friction velocity, roughness length, and the drag coefficient over coastal zones and open water surfaces enables us to better understand the physical processes of air-water interaction. In cont...The parameterization of friction velocity, roughness length, and the drag coefficient over coastal zones and open water surfaces enables us to better understand the physical processes of air-water interaction. In context of measurements from the Humidity Exchange over the Sea Main Experiment (HEXMAX), we recently proposed wave-parameter dependent approaches to sea surface friction velocity and the aerodynamic roughness by using the dimensional analysis method. To extend the application of these approaches to a range of natural surface conditions, the present study is to assess this approach by using both coastal shallow (RASEX) and open water surface measurements (Lake Ontario and Grand Banks ERS-1 SAR) where wind speeds were greater than 6.44 m s-1. Friction velocities, the surface aerodynamic roughness, and the neutral drag coefficient estimated by these approaches under moderate wind conditions were compared with the measurements mentioned above. Results showed that the coefficients in these approaches for coastal shallow water surface differ from those for open water surfaces, and that the aerodynamic roughness length in terms of wave age or significant wave height should be treated differently for coastal shallow and open water surfaces.展开更多
首先利用考虑波浪破碎效应的Mellor-Yamada 2.5阶湍流闭合方案,探讨了海表温度(SST)对波能因子α和Charnock数β的敏感性问题。然后采用变分数据同化途径,基于Papa海洋天气站(OWS Papa Station)的上层温度观测数据,对该参数化方案中的...首先利用考虑波浪破碎效应的Mellor-Yamada 2.5阶湍流闭合方案,探讨了海表温度(SST)对波能因子α和Charnock数β的敏感性问题。然后采用变分数据同化途径,基于Papa海洋天气站(OWS Papa Station)的上层温度观测数据,对该参数化方案中的波能因子α和Charnock数β两个参数进行了最优估计。最优估计的结果表明,当α约为167、β约为4.1×105时,价值函数达到最小值。利用上述参数的最优估计进行海温的数值模拟,可以较好地反映出海表温度的日变化和月变化过程,模拟的上混合层的温度和深度也与观测较为一致。最后利用以上参数的最优估计结果对湍动能方程进行诊断计算,研究了波浪破碎对海洋上层湍能量收支的影响。展开更多
基金support from the National Basic Research Program of China (973 Program) (No. 2009CB421500)the National Natural Science Foundation of China (GrantNos. 40875039 and 40730948)+3 种基金the Typhoon Research Foundation of Shanghai Typhoon Institute/China Mete-orological Administration (Grant Nos. 2006STB07 and2008ST11)support from the Knowledge Innovation Program of theChinese Academy of Sciences (IAP09318)support from the US Office of Naval Research (Grant No. N00014-021-0532)the National Science Foundation (Grant No. ATM-0427128)
文摘A new parameterization scheme of sea surface momentum roughness length for all wind regimes, including high winds, under tropical cyclone (TC) conditions is constructed based on measurements from Global Positioning System (GPS) dropsonde. It reproduces the observed regime transition, namely, an increase of the drag coefficient with an increase in wind speed up to 40 m s-1 , followed by a decrease with a further increase in wind speed. The effect of this parameterization on the structure and intensity of TCs is evaluated using a newly developed numerical model, TCM4. The results show that the final intensity is increased by 10.5% (8.9%) in the maximum surface wind speed and by 8.1 hPa (5.9 hPa) in the minimum sea surface pressure drop with (without) dissipative heating. This intensity increase is found to be due mainly to the reduced frictional dissipation in the surface layer and little to do with either the surface enthalpy flux or latent heat release in the eyewall convection. The effect of the new parameterization on the storm structure is found to be insignificant and occurs only in the inner core region with the increase in tangential winds in the eyewall and the increase in temperature anomalies in the eye. This is because the difference in drag coefficient appears only in a small area under the eyewall. Implications of the results are briefly discussed.
基金supported by Chinese Ministry of Science and Technology(2006CB403600, 2006CB403500, 2006BAB18B03, and 2006BAB18B05)Chinese Meteorological Administration [GYHY(QX)2007-6-5]+2 种基金the Centurial Program sponsored by the Chinese Academy of Sciences in ChinaNational Science Foundation Committee (40233032) in Chinasupported by N0001409WR20059 sponsored by the Office of Naval Research (ONR), USA
文摘The parameterization of friction velocity, roughness length, and the drag coefficient over coastal zones and open water surfaces enables us to better understand the physical processes of air-water interaction. In context of measurements from the Humidity Exchange over the Sea Main Experiment (HEXMAX), we recently proposed wave-parameter dependent approaches to sea surface friction velocity and the aerodynamic roughness by using the dimensional analysis method. To extend the application of these approaches to a range of natural surface conditions, the present study is to assess this approach by using both coastal shallow (RASEX) and open water surface measurements (Lake Ontario and Grand Banks ERS-1 SAR) where wind speeds were greater than 6.44 m s-1. Friction velocities, the surface aerodynamic roughness, and the neutral drag coefficient estimated by these approaches under moderate wind conditions were compared with the measurements mentioned above. Results showed that the coefficients in these approaches for coastal shallow water surface differ from those for open water surfaces, and that the aerodynamic roughness length in terms of wave age or significant wave height should be treated differently for coastal shallow and open water surfaces.
文摘首先利用考虑波浪破碎效应的Mellor-Yamada 2.5阶湍流闭合方案,探讨了海表温度(SST)对波能因子α和Charnock数β的敏感性问题。然后采用变分数据同化途径,基于Papa海洋天气站(OWS Papa Station)的上层温度观测数据,对该参数化方案中的波能因子α和Charnock数β两个参数进行了最优估计。最优估计的结果表明,当α约为167、β约为4.1×105时,价值函数达到最小值。利用上述参数的最优估计进行海温的数值模拟,可以较好地反映出海表温度的日变化和月变化过程,模拟的上混合层的温度和深度也与观测较为一致。最后利用以上参数的最优估计结果对湍动能方程进行诊断计算,研究了波浪破碎对海洋上层湍能量收支的影响。