期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估 被引量:10
1
作者 黄冬梅 李明慧 +1 位作者 宋巍 王建 《中国图象图形学报》 CSCD 北大核心 2018年第11期1720-1732,共13页
目的海冰分类是海冰监测的主要任务之一。目前基于合成孔径雷达SAR影像的海冰分类方法分为两类:一类是基于海冰物理特性与SAR成像特征等进行分类,这需要一定的专业背景;另一类基于传统的图像特征分类,需要人为设计特征,受限于先验知识... 目的海冰分类是海冰监测的主要任务之一。目前基于合成孔径雷达SAR影像的海冰分类方法分为两类:一类是基于海冰物理特性与SAR成像特征等进行分类,这需要一定的专业背景;另一类基于传统的图像特征分类,需要人为设计特征,受限于先验知识。近年来深度学习在图像分类和目标识别方面取得了巨大的成功,为了提高海冰分类精度及海冰分类速度,本文尝试将卷积神经网络(CNN)和深度置信网络(DBN)用于海冰的冰水分类,评估不同类型深度学习模型在SAR影像海冰分类方面的性能及其影响因素。方法首先根据加拿大海冰服务局(CIS)的冰蛋图构建海冰的冰水数据集;然后设计卷积神经网络和深度置信网络的网络架构;最后评估两种模型在不同训练样本尺寸、不同数据集大小和网络层数、不同冰水比例的测试影像以及不同中值滤波窗口的分类性能。结果两种模型的总体分类准确率达到93%以上,Kappa系数0. 8以上,根据分类结果得到的海冰区域密集度与CIS的冰蛋图海冰密集度数据一致。海冰的训练样本尺寸对分类结果影响显著,而训练集大小以及网络层数的影响较小。在本文的实验条件下,CNN和DBN网络的最佳分类样本尺寸分别是16×16像素和32×32像素。结论利用CNN和DBN模型对SAR影像海冰冰水分类,并进行性能分析。发现深度学习模型用于SAR影像海冰分类具有潜力,与现有的海冰解译图的制作流程和信息量相比,基于深度学习模型的SAR影像海冰分类可以提供更加详细的海冰地理分布信息,并且减小时间和资源成本。 展开更多
关键词 海冰的冰水分类 SAR影像 深度学习 卷积神经网络 深度置信网络 海冰解译图
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部