期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估
被引量:
10
1
作者
黄冬梅
李明慧
+1 位作者
宋巍
王建
《中国图象图形学报》
CSCD
北大核心
2018年第11期1720-1732,共13页
目的海冰分类是海冰监测的主要任务之一。目前基于合成孔径雷达SAR影像的海冰分类方法分为两类:一类是基于海冰物理特性与SAR成像特征等进行分类,这需要一定的专业背景;另一类基于传统的图像特征分类,需要人为设计特征,受限于先验知识...
目的海冰分类是海冰监测的主要任务之一。目前基于合成孔径雷达SAR影像的海冰分类方法分为两类:一类是基于海冰物理特性与SAR成像特征等进行分类,这需要一定的专业背景;另一类基于传统的图像特征分类,需要人为设计特征,受限于先验知识。近年来深度学习在图像分类和目标识别方面取得了巨大的成功,为了提高海冰分类精度及海冰分类速度,本文尝试将卷积神经网络(CNN)和深度置信网络(DBN)用于海冰的冰水分类,评估不同类型深度学习模型在SAR影像海冰分类方面的性能及其影响因素。方法首先根据加拿大海冰服务局(CIS)的冰蛋图构建海冰的冰水数据集;然后设计卷积神经网络和深度置信网络的网络架构;最后评估两种模型在不同训练样本尺寸、不同数据集大小和网络层数、不同冰水比例的测试影像以及不同中值滤波窗口的分类性能。结果两种模型的总体分类准确率达到93%以上,Kappa系数0. 8以上,根据分类结果得到的海冰区域密集度与CIS的冰蛋图海冰密集度数据一致。海冰的训练样本尺寸对分类结果影响显著,而训练集大小以及网络层数的影响较小。在本文的实验条件下,CNN和DBN网络的最佳分类样本尺寸分别是16×16像素和32×32像素。结论利用CNN和DBN模型对SAR影像海冰冰水分类,并进行性能分析。发现深度学习模型用于SAR影像海冰分类具有潜力,与现有的海冰解译图的制作流程和信息量相比,基于深度学习模型的SAR影像海冰分类可以提供更加详细的海冰地理分布信息,并且减小时间和资源成本。
展开更多
关键词
海冰的冰水分类
SAR影像
深度学习
卷积神经网络
深度置信网络
海冰解译图
原文传递
题名
卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估
被引量:
10
1
作者
黄冬梅
李明慧
宋巍
王建
机构
上海海洋大学
上海电力学院
出处
《中国图象图形学报》
CSCD
北大核心
2018年第11期1720-1732,共13页
基金
国家自然科学基金项目(41671431
61702323)
上海市高校特聘教授(东方学者)基金项目(TP201638)~~
文摘
目的海冰分类是海冰监测的主要任务之一。目前基于合成孔径雷达SAR影像的海冰分类方法分为两类:一类是基于海冰物理特性与SAR成像特征等进行分类,这需要一定的专业背景;另一类基于传统的图像特征分类,需要人为设计特征,受限于先验知识。近年来深度学习在图像分类和目标识别方面取得了巨大的成功,为了提高海冰分类精度及海冰分类速度,本文尝试将卷积神经网络(CNN)和深度置信网络(DBN)用于海冰的冰水分类,评估不同类型深度学习模型在SAR影像海冰分类方面的性能及其影响因素。方法首先根据加拿大海冰服务局(CIS)的冰蛋图构建海冰的冰水数据集;然后设计卷积神经网络和深度置信网络的网络架构;最后评估两种模型在不同训练样本尺寸、不同数据集大小和网络层数、不同冰水比例的测试影像以及不同中值滤波窗口的分类性能。结果两种模型的总体分类准确率达到93%以上,Kappa系数0. 8以上,根据分类结果得到的海冰区域密集度与CIS的冰蛋图海冰密集度数据一致。海冰的训练样本尺寸对分类结果影响显著,而训练集大小以及网络层数的影响较小。在本文的实验条件下,CNN和DBN网络的最佳分类样本尺寸分别是16×16像素和32×32像素。结论利用CNN和DBN模型对SAR影像海冰冰水分类,并进行性能分析。发现深度学习模型用于SAR影像海冰分类具有潜力,与现有的海冰解译图的制作流程和信息量相比,基于深度学习模型的SAR影像海冰分类可以提供更加详细的海冰地理分布信息,并且减小时间和资源成本。
关键词
海冰的冰水分类
SAR影像
深度学习
卷积神经网络
深度置信网络
海冰解译图
Keywords
sea ice
-
water
classification
SAR
imagery
deep
leanaing
convolution
neural
network
deep
belief
network
sea ice
interpretation
map
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
原文传递
题名
作者
出处
发文年
被引量
操作
1
卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估
黄冬梅
李明慧
宋巍
王建
《中国图象图形学报》
CSCD
北大核心
2018
10
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部