-
题名基于多尺度重建和约束聚类的海冰变化检测算法
- 1
-
-
作者
尹艳华
张云鹏
肇同斌
汤津赢
王玮琪
-
机构
辽宁省气象信息中心
-
出处
《测试技术学报》
2023年第3期199-207,共9页
-
文摘
针对多时相合成孔径雷达(Synthetic Aperture Radar,SAR)图像在海冰变化检测中存在的固有斑点噪声问题,提出基于多尺度重建和约束聚类的海冰变化检测算法。首先,为了抑制斑点噪声,使用多尺度超像素重建方法生成差分图像,并利用局部空间同质信息增强边缘。然后,将两阶段中心约束模糊C均值聚类算法和并行策略相结合,以约束图像预分类过程中聚类中心的错误漂移。最后,在分类阶段将双树复小波变换引入卷积神经网络中构成卷积小波神经网络(Convolutional-Wavelet Neural Network,CWNN),并通过虚拟样本生成方法生成新样本,以缓解模型训练中样本有限的问题。在2个常规数据集和1个海冰数据集上的实验结果证明了该方法的有效性和鲁棒性,对海冰变化检测的准确率达98.50%。
-
关键词
合成孔径雷达
海冰变化检测
超像素重建
模糊C均值
神经网络
-
Keywords
synthetic aperture radar
sea ice change detection
superpixel reconstruction
fuzzy C-means
neural network
-
分类号
TP391.9
[自动化与计算机技术—计算机应用技术]
-